If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2p+3)-(5p-2)/6p+11=2/17
We move all terms to the left:
(2p+3)-(5p-2)/6p+11-(2/17)=0
Domain of the equation: 6p!=0We add all the numbers together, and all the variables
p!=0/6
p!=0
p∈R
(2p+3)-(5p-2)/6p+11-(+2/17)=0
We get rid of parentheses
2p-(5p-2)/6p+3+11-2/17=0
We calculate fractions
2p+(-85p+34)/102p+(-12p)/102p+3+11=0
We add all the numbers together, and all the variables
2p+(-85p+34)/102p+(-12p)/102p+14=0
We multiply all the terms by the denominator
2p*102p+(-85p+34)+(-12p)+14*102p=0
Wy multiply elements
204p^2+(-85p+34)+(-12p)+1428p=0
We get rid of parentheses
204p^2-85p-12p+1428p+34=0
We add all the numbers together, and all the variables
204p^2+1331p+34=0
a = 204; b = 1331; c = +34;
Δ = b2-4ac
Δ = 13312-4·204·34
Δ = 1743817
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1331)-\sqrt{1743817}}{2*204}=\frac{-1331-\sqrt{1743817}}{408} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1331)+\sqrt{1743817}}{2*204}=\frac{-1331+\sqrt{1743817}}{408} $
| T=4k+2 | | b=3-7 | | 5=0.9x+0.1X | | x^2-50x+75=0 | | 7y-35=10-3y | | Z-8/5+z=6/7 | | 10w-3=34 | | 3y-3=-2y+8 | | 90+6y-12y=210 | | 1/4e=20 | | R2-6r+9=0 | | 2x^2+20x-325=0 | | 10x=9(x+7) | | -27-2w=7w+36 | | -3(x-5)+6(x+2)=9 | | 5(4-x)-7(-x+2)=4-9+3 | | 10(w-2)-3(w+2)=3-4(w-1) | | 7(u+7)-10u=5(3-4u) | | 5(z-9)+2(z+6=17+3(z+2) | | 7x/8-8=7 | | 9x+11=8x+13 | | 1t-7=7t | | 45*4+56/x=5 | | 5x-9x-6=3 | | 3^2x+3^x-21=0 | | 0.8x-15=0.8(6x-8) | | 29=23+11x+2 | | 29=23+11x+2/2 | | 11x+2=23+29/2 | | 4x-2*(-2x+5)=10 | | 1=4^3x-4 | | 500.000=d(1-(1+0.06/12)^-20(12) |