If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2p+3)-(5p-2)/6p+11=22/17
We move all terms to the left:
(2p+3)-(5p-2)/6p+11-(22/17)=0
Domain of the equation: 6p!=0We add all the numbers together, and all the variables
p!=0/6
p!=0
p∈R
(2p+3)-(5p-2)/6p+11-(+22/17)=0
We get rid of parentheses
2p-(5p-2)/6p+3+11-22/17=0
We calculate fractions
2p+(-85p+34)/102p+(-132p)/102p+3+11=0
We add all the numbers together, and all the variables
2p+(-85p+34)/102p+(-132p)/102p+14=0
We multiply all the terms by the denominator
2p*102p+(-85p+34)+(-132p)+14*102p=0
Wy multiply elements
204p^2+(-85p+34)+(-132p)+1428p=0
We get rid of parentheses
204p^2-85p-132p+1428p+34=0
We add all the numbers together, and all the variables
204p^2+1211p+34=0
a = 204; b = 1211; c = +34;
Δ = b2-4ac
Δ = 12112-4·204·34
Δ = 1438777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1211)-\sqrt{1438777}}{2*204}=\frac{-1211-\sqrt{1438777}}{408} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1211)+\sqrt{1438777}}{2*204}=\frac{-1211+\sqrt{1438777}}{408} $
| 8=m+19 | | 6.4+1.3n=2.89 | | -w+203=152 | | 8(u-4)=-8 | | 8a+7=3a+8 | | 5a+7=3a+8 | | Y=-2x+10.25 | | 9/3-4=x | | 6(5x-5)=4(4x-5) | | -3=x/4-28 | | -3=x/4-40 | | v/5+1=-9 | | 29=8v-1 | | -52=-w/6 | | 255/x=12 | | 9(2-3x)=18 | | 2u(u+4)=0 | | -2m-9=6-m | | 12x264=985 | | (5b+10)-(4b-4)=25 | | 5x^2+10x-240=0= | | 16x+32=156 | | 7(x-6)^2=196 | | 2/3x5/9x=4 | | (W+2)(w+10)=(w^2+12) | | 15-3m=-30 | | (8x-15)=2 | | 2^x-2=8^4 | | -3x^2+6x=-321 | | x+(x*0.4)=300 | | 3x+2=58 | | F(4(-3)+7=f(-6) |