If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2p+5)(3p)=180
We move all terms to the left:
(2p+5)(3p)-(180)=0
We multiply parentheses
6p^2+15p-180=0
a = 6; b = 15; c = -180;
Δ = b2-4ac
Δ = 152-4·6·(-180)
Δ = 4545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4545}=\sqrt{9*505}=\sqrt{9}*\sqrt{505}=3\sqrt{505}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{505}}{2*6}=\frac{-15-3\sqrt{505}}{12} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{505}}{2*6}=\frac{-15+3\sqrt{505}}{12} $
| c=530.087 | | e=389 | | 3+4.75e=42 | | | | | | x+10+(3x-1)=29 | | v=1,000.6 | | 3x+6+(3x+4)=82 | | (8a)+(5a-2)=180 | | 810-9d=729 | | 13-5n=n+1 | | 4+82x(6=3) | | (4y-9)+(y+3)+(y+5)=180 | | 60(100)+30(w)=150.00 | | 2x4+-30x3+20x+48=0 | | -8(6-4x)+1=-143 | | (87)+(5x-3)=(2x-1) | | .6(100)+.3(w)=150.00 | | -5-35=-2x+31 | | 8x6=35 | | (3/x^2)+5(2x)=1/2 | | x÷5,2=-105x=-105×5,2 | | -15r=-845 | | 1.5=x-100/12 | | -4(1+4m)=-116 | | -16=5x=-16 | | 7+8n=1+8n | | (x)=5/6x-4 | | 3/x^2+5(2x)=1/2 | | 50=x+6+x/2 | | X+2/2=2x-4 | | 2x^4-5x^2+2=0. |