(2p-3)(p+1)-p(2)=51

Simple and best practice solution for (2p-3)(p+1)-p(2)=51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2p-3)(p+1)-p(2)=51 equation:



(2p-3)(p+1)-p(2)=51
We move all terms to the left:
(2p-3)(p+1)-p(2)-(51)=0
We add all the numbers together, and all the variables
-1p^2+(2p-3)(p+1)-51=0
We multiply parentheses ..
-1p^2+(+2p^2+2p-3p-3)-51=0
We get rid of parentheses
-1p^2+2p^2+2p-3p-3-51=0
We add all the numbers together, and all the variables
p^2-1p-54=0
a = 1; b = -1; c = -54;
Δ = b2-4ac
Δ = -12-4·1·(-54)
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{217}}{2*1}=\frac{1-\sqrt{217}}{2} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{217}}{2*1}=\frac{1+\sqrt{217}}{2} $

See similar equations:

| 3-9(9+2m)=m | | 1/2+7/27=y/18 | | 8x^2+2x–6=0 | | 8x2+2x–6=0 | | 12−1/5r=2r+1 | | 3x+4=2x+13= | | 3m+4m=120 | | x^2+4x=720 | | 1.8y-2=0.6y+4 | | 3(2x=1)=4+10 | | 8x^2-3+4x=0 | | (3k-2)=2(k=2 | | 0=-1/x^2+4 | | 6x−5=0 | | (X-6)+3/x=2/3 | | 4m+3+m-7=3(6m+1)-(7-m) | | x²+6x=0 | | x²-3x=0 | | X^2-(5/3)x+(25/36)=0 | | 3x²=300 | | 3x²-4=2 | | x=12x+.09(20,000-x) | | x=10x=-5 | | y/6+y/4=7/3 | | 4(n)=n-1 | | x=2x=9 | | x=8x=18 | | 9=√(9x+9) | | (14+20)x(14+20)=(14+20)x(14+20) | | 42/360=x/168 | | A(n)=22+(n-1)12 | | A(n)=22+(n-1)2 |

Equations solver categories