If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2w+5)*w=63
We move all terms to the left:
(2w+5)*w-(63)=0
We multiply parentheses
2w^2+5w-63=0
a = 2; b = 5; c = -63;
Δ = b2-4ac
Δ = 52-4·2·(-63)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-23}{2*2}=\frac{-28}{4} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+23}{2*2}=\frac{18}{4} =4+1/2 $
| 2^3n=8 | | -(1/2)-(7/3)x=-(9/4) | | 4/1/32+5x=268 | | 4x32+5x=268 | | 4x+7=4(x+3)- | | 81x/10=20 | | 7m-8m=12 | | r-3≤9;r=8= | | -9x-6=-5x+18 | | -(16/9)=8x | | 2e+45=15 | | x-6=0,5 | | -141/6=166/7z | | v/7+3=8 | | 4h-12;h=-5= | | 2/7+n=-20 | | 8x-1=125 | | -30=-3(w+8) | | -4(w-2)=2w-22 | | 55=r/8-(-46) | | R(10.5)=-10p^2+130p | | 9(t-84)=63 | | 8+11x-6=10+3x | | v/5+79=86 | | b/5+78=85 | | h=-16^2+173+66 | | 51=5p-49 | | 15=f/4+14 | | X^3-4x^2-7=0 | | 11=5(x)+36 | | t/2+13=16 | | 3w+30=6(w+4) |