If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x)(3x-10)=130
We move all terms to the left:
(2x)(3x-10)-(130)=0
We multiply parentheses
6x^2-20x-130=0
a = 6; b = -20; c = -130;
Δ = b2-4ac
Δ = -202-4·6·(-130)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{55}}{2*6}=\frac{20-8\sqrt{55}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{55}}{2*6}=\frac{20+8\sqrt{55}}{12} $
| 2(3x–7)=-5x-6) | | -3+6x=4x | | -18+2v=20-17v | | 2(4x-2)=x+10 | | 115=3t | | 5(3k-4)=2(6k+5) | | 24x-33=12x-3 | | 4y-40+5y+2y=180 | | 2(3x–7)=-5(x-6) | | 2m+20=-8m | | 2(4x−2)=x+10 | | 3=4x=19 | | z+45+84+z+45=180 | | 10x+3x=3x+30 | | y+2.8=10.6 | | 5x-2(x+4)=40 | | 30-x+3x+10=90 | | 2x+7-6x=31 | | 82+5b+3b-6=180 | | 3x-7+x+15=50 | | 8x+4+5x+2=45 | | -8x2-16x=0 | | -9+3c=5c+ | | 2x+19=5-4x | | a+15+2a+2a=180 | | 24=5(x+2)+2x | | 5x+2x+2x=63 | | 3(x+2)=9x-18 | | 10x=12x-4 | | 52+x+14+3x+2=180 | | -6u+3+6u=X | | x/2+x/5+20=x |