If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x)=(x-5)(x-23)
We move all terms to the left:
(2x)-((x-5)(x-23))=0
We multiply parentheses ..
-((+x^2-23x-5x+115))+2x=0
We calculate terms in parentheses: -((+x^2-23x-5x+115)), so:We add all the numbers together, and all the variables
(+x^2-23x-5x+115)
We get rid of parentheses
x^2-23x-5x+115
We add all the numbers together, and all the variables
x^2-28x+115
Back to the equation:
-(x^2-28x+115)
2x-(x^2-28x+115)=0
We get rid of parentheses
-x^2+2x+28x-115=0
We add all the numbers together, and all the variables
-1x^2+30x-115=0
a = -1; b = 30; c = -115;
Δ = b2-4ac
Δ = 302-4·(-1)·(-115)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{110}}{2*-1}=\frac{-30-2\sqrt{110}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{110}}{2*-1}=\frac{-30+2\sqrt{110}}{-2} $
| 4-x3(4-2)=x | | 2(7y-11)=5y+5 | | 3p+3=-5p+3(p-4) | | 2(7y-11)=5y+y | | 9x+36=7x | | 3(6-4x)=2(9-6x) | | x^2-4,5x=0 | | 2x-2x+5x=0 | | 4i+3=2i+21 | | (4x)=(2x+20) | | 11x=114.115 | | 11x^2-3x-1=0 | | x2+(5x)2-26=0 | | 9x-18=10x+3 | | -208,21=45,522*x-2,529*x^2 | | 2=2m−7 | | -8x+24=12(x-6) | | 133=(x+6)(x-6) | | 50=6b=86 | | 5m+16=3m-8 | | 6x2=5x2 | | 208,21=45,522*x-2,529*x^2 | | t÷5-1=9 | | 4(3x-9)=2(5+8) | | 250+100x=300+280x | | 113=(X+6)(x-6) | | 10(a-3)=-128 | | a÷5+7=16 | | 129=2a+5=(2a-3) | | 129=2a+5(2a-3) | | 129-2a+5=(2a-3) | | 208,21=0,5*5,058*18*x-0,5*5,058*x^2 |