If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x*1)-(4x)2=(-3x)2+2x+1
We move all terms to the left:
(2x*1)-(4x)2-((-3x)2+2x+1)=0
We add all the numbers together, and all the variables
(+2x*1)-4x2-((-3x)2+2x+1)=0
We add all the numbers together, and all the variables
-4x^2+(+2x*1)-((-3x)2+2x+1)=0
We get rid of parentheses
-4x^2+2x*1-((-3x)2+2x+1)=0
We calculate terms in parentheses: -((-3x)2+2x+1), so:Wy multiply elements
(-3x)2+2x+1
We add all the numbers together, and all the variables
2x+(-3x)2+1
We multiply parentheses
2x-6x+1
We add all the numbers together, and all the variables
-4x+1
Back to the equation:
-(-4x+1)
-4x^2+2x-(-4x+1)=0
We get rid of parentheses
-4x^2+2x+4x-1=0
We add all the numbers together, and all the variables
-4x^2+6x-1=0
a = -4; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·(-4)·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5}}{2*-4}=\frac{-6-2\sqrt{5}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5}}{2*-4}=\frac{-6+2\sqrt{5}}{-8} $
| 2(x+30)+3x=135 | | -7(6+s)=49 | | 28=4s+28 | | 2x+10=6x-12-18 | | 6(3)+4y=38 | | j/8+20=25 | | 75x+35=225x+35 | | X+3x+3x/2=77 | | 11-3n=-1n-75 | | (3+y)(4y-1)=0 | | x+1=2(5x-4) | | -8+5=7-8b-2 | | 7x2-168=-35x | | X=6+2x-10 | | 9(4)-3y=-18 | | r/7+52=60 | | 9-x+x+3x=106 | | 9-(1+3x)=4x+1 | | 2/6=5/g | | 10x+9(3-4x)=3-3(5x-8)-10x | | 25+5x=72 | | 7(g-77)=77 | | X2=18+3x | | 8(h-87)=88 | | 78=6n+12 | | -6+2b=0 | | x+(x-10)+4x=116 | | 10x+1/10x+20=0,75 | | b-11/11=-7 | | Y=0.2x-5 | | 6/2x=14+7/2x | | 2x+6=6x+6-4x |