(2x*3x)=62

Simple and best practice solution for (2x*3x)=62 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x*3x)=62 equation:



(2x*3x)=62
We move all terms to the left:
(2x*3x)-(62)=0
We add all the numbers together, and all the variables
(+2x*3x)-62=0
We get rid of parentheses
2x*3x-62=0
Wy multiply elements
6x^2-62=0
a = 6; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·6·(-62)
Δ = 1488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1488}=\sqrt{16*93}=\sqrt{16}*\sqrt{93}=4\sqrt{93}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{93}}{2*6}=\frac{0-4\sqrt{93}}{12} =-\frac{4\sqrt{93}}{12} =-\frac{\sqrt{93}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{93}}{2*6}=\frac{0+4\sqrt{93}}{12} =\frac{4\sqrt{93}}{12} =\frac{\sqrt{93}}{3} $

See similar equations:

| 5=05n | | 16x+8+80+x=360 | | 81/v=3 | | 7x7+10=S | | 7(6x+3)-9=42x+12) | | 7(4-3x)=2(8x-9)6 | | 4x+8.46=2x+15.62 | | =4(0.8)t | | 4x+36+5x+24+x=180 | | 8.6x+4.4-11=5; | | w/4-10=3 | | 9k+6+4k+5=108 | | 6(2u+3)=3(2/3u+1) | | x*2-4x-4=0 | | .75(x-8)=51 | | 3x+10=-8x-1 | | 10(p-2)=5(p+3) | | 18=−7x​+12 | | 1/2(6x+17)=4x | | 12(3b-2)=6(b-3) | | 1.5(x-9)=15 | | 13=3/4(5x-8) | | -13-2x=-5x-1 | | 5(y−3)=  30 | | 5(�−3)=5(y−3)=  3030 | | Y-3y=16 | | 0.5g=12 | | 5n-7(-n+3)=2n-9 | | 51-54=50-x | | 12−3x=8−x | | 17-5x=2x+3 | | 3∣m∣−6=12 |

Equations solver categories