(2x+1)(2x+1)+38=180

Simple and best practice solution for (2x+1)(2x+1)+38=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)(2x+1)+38=180 equation:



(2x+1)(2x+1)+38=180
We move all terms to the left:
(2x+1)(2x+1)+38-(180)=0
We add all the numbers together, and all the variables
(2x+1)(2x+1)-142=0
We multiply parentheses ..
(+4x^2+2x+2x+1)-142=0
We get rid of parentheses
4x^2+2x+2x+1-142=0
We add all the numbers together, and all the variables
4x^2+4x-141=0
a = 4; b = 4; c = -141;
Δ = b2-4ac
Δ = 42-4·4·(-141)
Δ = 2272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2272}=\sqrt{16*142}=\sqrt{16}*\sqrt{142}=4\sqrt{142}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{142}}{2*4}=\frac{-4-4\sqrt{142}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{142}}{2*4}=\frac{-4+4\sqrt{142}}{8} $

See similar equations:

| 29+15x=-x−3 | | 4(−4x+2)+2x+5=4(−4x+2)+2x+5=  −57−57 | | 14y-8y=22 | | -7j=3-6j | | _5(3_4x=_6+20x_9 | | 3(2=x)-4x=x+16 | | -5+n/3=15 | | x/3=238 | | a+3/1/4=5/2/9 | | 3/5x+6=15 | | H=16r^2+15r+12 | | -5p=20= | | f=1/4=7/2 | | 15÷x=813 | | 7m=9(1m+4) | | 2(a-4)+15=113 | | 2+4s=7+2s | | -5+h/2=-7 | | 3x-5=-70 | | -9x+13=-3x-23 | | 3u+4=4u-3 | | 3(j+5)=5(11-j | | -7+6d=2d+9+8d | | 5x+20=(x+4)x | | 2(u+7=42 | | 5.11*10^-6=(x)(0.0004+4x^2) | | 6v-10=4v-1 | | 15=11x-9 | | 2s+4s=7+2s | | -16=r-2 | | 7v-6v=-69 | | 18(-3y+5/2)-3y=-4 |

Equations solver categories