(2x+1)(2x+1)=(x-3)(x-3)

Simple and best practice solution for (2x+1)(2x+1)=(x-3)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)(2x+1)=(x-3)(x-3) equation:



(2x+1)(2x+1)=(x-3)(x-3)
We move all terms to the left:
(2x+1)(2x+1)-((x-3)(x-3))=0
We multiply parentheses ..
(+4x^2+2x+2x+1)-((x-3)(x-3))=0
We calculate terms in parentheses: -((x-3)(x-3)), so:
(x-3)(x-3)
We multiply parentheses ..
(+x^2-3x-3x+9)
We get rid of parentheses
x^2-3x-3x+9
We add all the numbers together, and all the variables
x^2-6x+9
Back to the equation:
-(x^2-6x+9)
We get rid of parentheses
4x^2-x^2+2x+2x+6x+1-9=0
We add all the numbers together, and all the variables
3x^2+10x-8=0
a = 3; b = 10; c = -8;
Δ = b2-4ac
Δ = 102-4·3·(-8)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*3}=\frac{-24}{6} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*3}=\frac{4}{6} =2/3 $

See similar equations:

| 2/9t-3=5 | | 8(l+7)=144 | | 4-9•a=176 | | 7(7c+7)-4c=13(3c-2) | | .5(x-8)(x-8)=18 | | x*9-8=9 | | 1-3p+10p=-6p+14 | | 1.5(x-8)(x-8)=18 | | 15+x*7,5=50 | | 9k+7=3+8k | | -5p-11=4 | | (2m-10)/4=(3-m)/2 | | 4c+3=-3c-4 | | 2x+15+4x+5+x+x=180 | | 8k+2=5k-22 | | 7x-4/2=12 | | x+320=2x | | 4(2x+7)=26 | | h+5/2=-5/4 | | 5x+2(11-4x)=32+x | | 5-x(4-1(1-x)*5)=5(1-x)(x+1) | | y-7=3y-2 | | x/10/5=1 | | 25^x-5=0 | | 2X-1,2y+3=X | | 14i=7 | | -7x-3+5x=-6x+10-15 | | 2×(1.2-2x)=1.8 | | 0=2x^2+4x-80 | | 51=-25+2x | | 8/x-x=4 | | (x+5)*(x-4)=0 |

Equations solver categories