(2x+1)(3x+1)=69(x+1)

Simple and best practice solution for (2x+1)(3x+1)=69(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)(3x+1)=69(x+1) equation:


Simplifying
(2x + 1)(3x + 1) = 69(x + 1)

Reorder the terms:
(1 + 2x)(3x + 1) = 69(x + 1)

Reorder the terms:
(1 + 2x)(1 + 3x) = 69(x + 1)

Multiply (1 + 2x) * (1 + 3x)
(1(1 + 3x) + 2x * (1 + 3x)) = 69(x + 1)
((1 * 1 + 3x * 1) + 2x * (1 + 3x)) = 69(x + 1)
((1 + 3x) + 2x * (1 + 3x)) = 69(x + 1)
(1 + 3x + (1 * 2x + 3x * 2x)) = 69(x + 1)
(1 + 3x + (2x + 6x2)) = 69(x + 1)

Combine like terms: 3x + 2x = 5x
(1 + 5x + 6x2) = 69(x + 1)

Reorder the terms:
1 + 5x + 6x2 = 69(1 + x)
1 + 5x + 6x2 = (1 * 69 + x * 69)
1 + 5x + 6x2 = (69 + 69x)

Solving
1 + 5x + 6x2 = 69 + 69x

Solving for variable 'x'.

Reorder the terms:
1 + -69 + 5x + -69x + 6x2 = 69 + 69x + -69 + -69x

Combine like terms: 1 + -69 = -68
-68 + 5x + -69x + 6x2 = 69 + 69x + -69 + -69x

Combine like terms: 5x + -69x = -64x
-68 + -64x + 6x2 = 69 + 69x + -69 + -69x

Reorder the terms:
-68 + -64x + 6x2 = 69 + -69 + 69x + -69x

Combine like terms: 69 + -69 = 0
-68 + -64x + 6x2 = 0 + 69x + -69x
-68 + -64x + 6x2 = 69x + -69x

Combine like terms: 69x + -69x = 0
-68 + -64x + 6x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-34 + -32x + 3x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-34 + -32x + 3x2)' equal to zero and attempt to solve: Simplifying -34 + -32x + 3x2 = 0 Solving -34 + -32x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -11.33333333 + -10.66666667x + x2 = 0 Move the constant term to the right: Add '11.33333333' to each side of the equation. -11.33333333 + -10.66666667x + 11.33333333 + x2 = 0 + 11.33333333 Reorder the terms: -11.33333333 + 11.33333333 + -10.66666667x + x2 = 0 + 11.33333333 Combine like terms: -11.33333333 + 11.33333333 = 0.00000000 0.00000000 + -10.66666667x + x2 = 0 + 11.33333333 -10.66666667x + x2 = 0 + 11.33333333 Combine like terms: 0 + 11.33333333 = 11.33333333 -10.66666667x + x2 = 11.33333333 The x term is -10.66666667x. Take half its coefficient (-5.333333335). Square it (28.44444446) and add it to both sides. Add '28.44444446' to each side of the equation. -10.66666667x + 28.44444446 + x2 = 11.33333333 + 28.44444446 Reorder the terms: 28.44444446 + -10.66666667x + x2 = 11.33333333 + 28.44444446 Combine like terms: 11.33333333 + 28.44444446 = 39.77777779 28.44444446 + -10.66666667x + x2 = 39.77777779 Factor a perfect square on the left side: (x + -5.333333335)(x + -5.333333335) = 39.77777779 Calculate the square root of the right side: 6.306962644 Break this problem into two subproblems by setting (x + -5.333333335) equal to 6.306962644 and -6.306962644.

Subproblem 1

x + -5.333333335 = 6.306962644 Simplifying x + -5.333333335 = 6.306962644 Reorder the terms: -5.333333335 + x = 6.306962644 Solving -5.333333335 + x = 6.306962644 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '5.333333335' to each side of the equation. -5.333333335 + 5.333333335 + x = 6.306962644 + 5.333333335 Combine like terms: -5.333333335 + 5.333333335 = 0.000000000 0.000000000 + x = 6.306962644 + 5.333333335 x = 6.306962644 + 5.333333335 Combine like terms: 6.306962644 + 5.333333335 = 11.640295979 x = 11.640295979 Simplifying x = 11.640295979

Subproblem 2

x + -5.333333335 = -6.306962644 Simplifying x + -5.333333335 = -6.306962644 Reorder the terms: -5.333333335 + x = -6.306962644 Solving -5.333333335 + x = -6.306962644 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '5.333333335' to each side of the equation. -5.333333335 + 5.333333335 + x = -6.306962644 + 5.333333335 Combine like terms: -5.333333335 + 5.333333335 = 0.000000000 0.000000000 + x = -6.306962644 + 5.333333335 x = -6.306962644 + 5.333333335 Combine like terms: -6.306962644 + 5.333333335 = -0.973629309 x = -0.973629309 Simplifying x = -0.973629309

Solution

The solution to the problem is based on the solutions from the subproblems. x = {11.640295979, -0.973629309}

Solution

x = {11.640295979, -0.973629309}

See similar equations:

| 1/8(4x-24) | | 0.3(x-4)-0.05(2x-3)=0.1(5-x) | | -37+4m=1+7(m-8) | | (4x+1)(4x)=256 | | -x+x-y-3= | | 4(7x+5)=-3x+20 | | (1/9)1/2 | | (-4x^7+2x^9+9+9x^8)-(5-3x^8+8x^9+7x^7)= | | 121^(3/2) | | -6c-4c=-110 | | 12-5x+y= | | 5x+5y=55 | | 0.75(2x-1)-0.5(x-3)=0.3(4x-1) | | 41-x=36 | | x^2-3xy-10y^2= | | x/1.5=0.8 | | -21=4x | | 5x+5y+25z= | | -27/.75 | | 0.2(x-2)+0.3(5x-4)=0.5x | | 3y+5y+7+9= | | 4x^3-24x^2+36x-8=0 | | 5-(8-3x)=(4x+7)-x | | 5.52y-38.64+9.2y=11.04y-77.28+64.4 | | 5.52y-38.64+9.2y=11.04y-77.28+64 | | 7(2n-6)= | | 0.6x+18+x=2x+23-0.5x | | 0.5(x-1)-0.6(x-4)=0.16(3x-1) | | 3/5-11/15 | | -28=3(v-6)-5v | | 6x-37+3x-19=90 | | s=0.5*9.8*t^2 |

Equations solver categories