If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+1)(3x+2)-(x-3)(x+2)=3(x+1)(3x-4)
We move all terms to the left:
(2x+1)(3x+2)-(x-3)(x+2)-(3(x+1)(3x-4))=0
We multiply parentheses ..
(+6x^2+4x+3x+2)-(x-3)(x+2)-(3(x+1)(3x-4))=0
We calculate terms in parentheses: -(3(x+1)(3x-4)), so:We get rid of parentheses
3(x+1)(3x-4)
We multiply parentheses ..
3(+3x^2-4x+3x-4)
We multiply parentheses
9x^2-12x+9x-12
We add all the numbers together, and all the variables
9x^2-3x-12
Back to the equation:
-(9x^2-3x-12)
6x^2-9x^2+4x+3x-(x-3)(x+2)+3x+2+12=0
We multiply parentheses ..
6x^2-9x^2-(+x^2+2x-3x-6)+4x+3x+3x+2+12=0
We add all the numbers together, and all the variables
-3x^2-(+x^2+2x-3x-6)+10x+14=0
We get rid of parentheses
-3x^2-x^2-2x+3x+10x+6+14=0
We add all the numbers together, and all the variables
-4x^2+11x+20=0
a = -4; b = 11; c = +20;
Δ = b2-4ac
Δ = 112-4·(-4)·20
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-21}{2*-4}=\frac{-32}{-8} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+21}{2*-4}=\frac{10}{-8} =-1+1/4 $
| 3.7(-83x-3)=3.7(7x-3) | | 8x-2x+5=25 | | -8x+15+7x=21 | | 5(v-6)-8=-4(-8v+6)-9v | | 15x+32-16x=16-3x-24 | | 15x-24=-8+6x+x | | 8v+24=12v | | 142-x=295 | | -24+18x-15=8x-12+x | | -3(-7u+8)-u=2(u-3)-3 | | w=1/6w+62/3 | | 3y^2-20y+110=0 | | 2(x+1)-3=x-2 | | 1/4(2x-30)=3x | | 20x+18=16x | | 7+(6/7)x=0 | | 〖25〗^(x-3)=625 | | 7x-15=-1;2 | | 4.2j=1/32 | | 3t+16.9=(11t-29.5) | | 1/3x+1/2x=1/2+12 | | -13x=152 | | 3-3v=-v-3 | | 3x+7(2)=128 | | (2x+5)(7-3x)-9=0 | | 2x-3=-3x | | x-0.2x=1360 | | t*2=14 | | 2(50)+8x=4(50+x) | | 8n=8n+12 | | (2x-5)-4x=33 | | (z+1)/2=24 |