(2x+1)(5x+5)+90=180

Simple and best practice solution for (2x+1)(5x+5)+90=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)(5x+5)+90=180 equation:



(2x+1)(5x+5)+90=180
We move all terms to the left:
(2x+1)(5x+5)+90-(180)=0
We add all the numbers together, and all the variables
(2x+1)(5x+5)-90=0
We multiply parentheses ..
(+10x^2+10x+5x+5)-90=0
We get rid of parentheses
10x^2+10x+5x+5-90=0
We add all the numbers together, and all the variables
10x^2+15x-85=0
a = 10; b = 15; c = -85;
Δ = b2-4ac
Δ = 152-4·10·(-85)
Δ = 3625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3625}=\sqrt{25*145}=\sqrt{25}*\sqrt{145}=5\sqrt{145}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{145}}{2*10}=\frac{-15-5\sqrt{145}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{145}}{2*10}=\frac{-15+5\sqrt{145}}{20} $

See similar equations:

| y=(1+0.85^4 | | 3(y−5)=  15 | | -15=-3x+9 | | 2=9-q | | -32/x=-4 | | -2i+3=-3i+2 | | 50=-0.5^2+40x-300 | | 2(3x+1)=x+15 | | 1368/600=x | | 50=-0.5^2+40x+300 | | 7x+3=4x+-2 | | w2–23w–24=0 | | 7x-31=60 | | m+285=-269 | | 5.87+3.22x=13.92 | | 4c+17=23 | | 684=m-264 | | 5x+22+96=180 | | 5n-2)(n-2)=0 | | -5+8x+10-6x=-8 | | 16-3x+5x-9=12 | | -0.2x+3.1=-13.3 | | (3x+10)(5x-12)=180 | | (y+7)(y-2)=0 | | 5x-3-7x+8=12 | | +17=3y-7 | | 3x+2-9x-8=-5 | | 17x+9=9x-39 | | 38=–7–3x | | 4x-9=-10 | | 14x+6=7x-22 | | 4x+5.25=25 |

Equations solver categories