(2x+1)(x+4)+(x+4)(3+-5x)=0

Simple and best practice solution for (2x+1)(x+4)+(x+4)(3+-5x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)(x+4)+(x+4)(3+-5x)=0 equation:



(2x+1)(x+4)+(x+4)(3+-5x)=0
We add all the numbers together, and all the variables
(2x+1)(x+4)+(x+4)(-5x)=0
We multiply parentheses ..
(+2x^2+8x+x+4)+(x+4)(-5x)=0
We get rid of parentheses
2x^2+8x+x+(x+4)(-5x)+4=0
We multiply parentheses ..
2x^2+(-5x^2-20x)+8x+x+4=0
We add all the numbers together, and all the variables
2x^2+(-5x^2-20x)+9x+4=0
We get rid of parentheses
2x^2-5x^2-20x+9x+4=0
We add all the numbers together, and all the variables
-3x^2-11x+4=0
a = -3; b = -11; c = +4;
Δ = b2-4ac
Δ = -112-4·(-3)·4
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-13}{2*-3}=\frac{-2}{-6} =1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+13}{2*-3}=\frac{24}{-6} =-4 $

See similar equations:

| 1/2r−3=3(4−2/3​r) | | -2x(-x+11)=-13+2x=-9 | | 6x²+15x-1=0 | | X+-3t/7+2t=0 | | (5^4x-17)=125 | | 5^4x-17=125 | | 2(20+6)=x | | 28=-10^x | | (x-1)(x-5)(x+8)(x+2)=880 | | 28=〖10〗^x | | x⁶-9x³+8=0 | | 9x-x^2+220=0 | | -14z+-2z+-4z+19-2z=18 | | n-7/3=4 | | 9q-9=18q+12 | | 6(2t+2)=5(2t+4) | | 9a+4=7a+6 | | 2m/8=27/9 | | 35=7x-2× | | Y=-c | | x^2+(0.75-0.75x)^2=1 | | (3f-1)(2f-1)=1 | | x^2-5x+500=0 | | x+x=90=45 | | 4q^2–45q=0 | | F(x)=x+5/2×-5 | | 3q+8=0 | | 1-d=-3 | | -72=72c | | -4x+27=79 | | -1=h+3 | | -2x-3(6x11)=-7 |

Equations solver categories