(2x+1)(x-2)=(2x+1)(2x-3)

Simple and best practice solution for (2x+1)(x-2)=(2x+1)(2x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)(x-2)=(2x+1)(2x-3) equation:



(2x+1)(x-2)=(2x+1)(2x-3)
We move all terms to the left:
(2x+1)(x-2)-((2x+1)(2x-3))=0
We multiply parentheses ..
(+2x^2-4x+x-2)-((2x+1)(2x-3))=0
We calculate terms in parentheses: -((2x+1)(2x-3)), so:
(2x+1)(2x-3)
We multiply parentheses ..
(+4x^2-6x+2x-3)
We get rid of parentheses
4x^2-6x+2x-3
We add all the numbers together, and all the variables
4x^2-4x-3
Back to the equation:
-(4x^2-4x-3)
We get rid of parentheses
2x^2-4x^2-4x+x+4x-2+3=0
We add all the numbers together, and all the variables
-2x^2+x+1=0
a = -2; b = 1; c = +1;
Δ = b2-4ac
Δ = 12-4·(-2)·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3}{2*-2}=\frac{-4}{-4} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3}{2*-2}=\frac{2}{-4} =-1/2 $

See similar equations:

| (3x+5)×2=(2x-1)×4 | | 25x^2-23x-2=0 | | 9(4x-1)÷2x=15 | | 6a/7=12 | | 3a/5=9 | | 7a/2=21 | | 4a/7=12 | | x×(-10)=15 | | 5a/3=15 | | 2x^2+8x3=0 | | 3a/2=6 | | 2^-x=0,0625 | | 0,0625=2^−x | | -2x-5/8=3x-7/2 | | a+2/3=4 | | 6x-3÷7=3 | | 27^3x+1=9^6 | | 3x^2+20x-117=0 | | 2+3m=m | | (x-2)+x=14 | | 20x^2+16x=48 | | 3^(x+2)+7^x=4*7^(x-1)+34*3^(x-1) | | 9x+2=-2x-3 | | x^2+15x-225=0 | | 13x=184 | | (x^2-13)^2=144 | | 7x+8=62-2x | | 10=39x | | x/7+5=29/7 | | b/5-7=-3 | | (3x-2)(-2x+16)=0 | | k/6+7=4 |

Equations solver categories