(2x+1)(x-3)+(x+6)(2x+1)=0

Simple and best practice solution for (2x+1)(x-3)+(x+6)(2x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)(x-3)+(x+6)(2x+1)=0 equation:



(2x+1)(x-3)+(x+6)(2x+1)=0
We multiply parentheses ..
(+2x^2-6x+x-3)+(x+6)(2x+1)=0
We get rid of parentheses
2x^2-6x+x+(x+6)(2x+1)-3=0
We multiply parentheses ..
2x^2+(+2x^2+x+12x+6)-6x+x-3=0
We add all the numbers together, and all the variables
2x^2+(+2x^2+x+12x+6)-5x-3=0
We get rid of parentheses
2x^2+2x^2+x+12x-5x+6-3=0
We add all the numbers together, and all the variables
4x^2+8x+3=0
a = 4; b = 8; c = +3;
Δ = b2-4ac
Δ = 82-4·4·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*4}=\frac{-12}{8} =-1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*4}=\frac{-4}{8} =-1/2 $

See similar equations:

| 1=8a | | 5x+7-2x-3=0 | | 4096=16x+8x | | (x-2)(2x+5)(-2x+1)=0 | | 3x-31=20 | | 3x-20=31 | | 6+3x=-5 | | 6(1/6x-2)=4(1-2x)+3 | | 31x-3=20 | | X-3x-20=8 | | 6n-5=5n+1 | | x^2/2+5,5+6x=0 | | 2x+1/3=2x-3 | | 3xx=-23+28 | | 32=2*3.14*r | | 8x+3x+12=10x-7 | | x=5+0.5+(X/4)+(x/5)+(x/6,66) | | x/1=7/1 | | 9x^2-25x-9=0 | | 2.5x+2=1.5 | | (5/2)x+2=3/2 | | 5x-2(2x+1)=6 | | 4p^2-30p+11=0 | | (3/2)x+3=4 | | 5x+35=3x+23 | | x^2-1.25+0.25=0 | | 9x+27=3x+33 | | 2(2w+4)=8(w+6)w= | | 3-5x-2(10-x)=1 | | 2x=x+52x=x+5. | | -15+y=2(4y-5)+30 | | 3(a+3)=33 |

Equations solver categories