(2x+1)+(3x+10)+(8/9x+10)=180

Simple and best practice solution for (2x+1)+(3x+10)+(8/9x+10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)+(3x+10)+(8/9x+10)=180 equation:



(2x+1)+(3x+10)+(8/9x+10)=180
We move all terms to the left:
(2x+1)+(3x+10)+(8/9x+10)-(180)=0
Domain of the equation: 9x+10)!=0
x∈R
We get rid of parentheses
2x+3x+8/9x+1+10+10-180=0
We multiply all the terms by the denominator
2x*9x+3x*9x+1*9x+10*9x+10*9x-180*9x+8=0
Wy multiply elements
18x^2+27x^2+9x+90x+90x-1620x+8=0
We add all the numbers together, and all the variables
45x^2-1431x+8=0
a = 45; b = -1431; c = +8;
Δ = b2-4ac
Δ = -14312-4·45·8
Δ = 2046321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2046321}=\sqrt{9*227369}=\sqrt{9}*\sqrt{227369}=3\sqrt{227369}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1431)-3\sqrt{227369}}{2*45}=\frac{1431-3\sqrt{227369}}{90} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1431)+3\sqrt{227369}}{2*45}=\frac{1431+3\sqrt{227369}}{90} $

See similar equations:

| (3.5x-3)+x+2.5x+x=93 | | 2(x-3)=7x+2 | | 5x-2x+6=8+3x | | X²-27x+182=0 | | 1/5.14=1/12+1/x | | (30/100)+x=1500 | | 2.51x+3.41=7.6x | | 3w(5×5)=20 | | -(-1+2x)-10=-10(6x-2)+6 | | 3216x^2+3859x+481=0 | | 65=-2,3143*x+82933, | | 3x+4x=450 | | 8132y^2-4839y+978=0 | | 29=5+3d | | y+5=-24 | | 5(e+9)-2(1-e)=1 | | 9x+7=7x+7 | | |3x-2/7|=|2x-3/5| | | 17(2-x)/1-7x+5(x+12)/7x-1=8 | | 4x-8=-3x+8 | | f(6)=7⋅6+6 | | (3-x)/(2x+5)=x/3 | | 3.9(9r=7)=78.7 | | 5(y-3)-9=-3(-8y+2)-5y | | 2(y-5)=2y+3-2(-5y-1) | | -6=14-4x | | 3x120=2x-60 | | -3(5y-4)+8y=7(y+2) | | 3x-2x=120-60 | | 2y-3+2(3y+2)=-6(y+1) | | 7(u-2)-3=-3(-8u+4)-2u | | x+2=6–x |

Equations solver categories