(2x+1)+(8/9x+10)=90

Simple and best practice solution for (2x+1)+(8/9x+10)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)+(8/9x+10)=90 equation:



(2x+1)+(8/9x+10)=90
We move all terms to the left:
(2x+1)+(8/9x+10)-(90)=0
Domain of the equation: 9x+10)!=0
x∈R
We get rid of parentheses
2x+8/9x+1+10-90=0
We multiply all the terms by the denominator
2x*9x+1*9x+10*9x-90*9x+8=0
Wy multiply elements
18x^2+9x+90x-810x+8=0
We add all the numbers together, and all the variables
18x^2-711x+8=0
a = 18; b = -711; c = +8;
Δ = b2-4ac
Δ = -7112-4·18·8
Δ = 504945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{504945}=\sqrt{441*1145}=\sqrt{441}*\sqrt{1145}=21\sqrt{1145}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-711)-21\sqrt{1145}}{2*18}=\frac{711-21\sqrt{1145}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-711)+21\sqrt{1145}}{2*18}=\frac{711+21\sqrt{1145}}{36} $

See similar equations:

| 45m+3=12 | | x-30=0.5x-22 | | x-30=1/2x-22 | | 22+54x=(-20)+60x | | 3.2=-4.5n | | 25t^2-20t-60=0 | | 0.6a-0.4a=28 | | 1.5x+96.2=0.8x-98.5 | | 173=-94*150+x | | .80x+30=1.20x+14 | | 189=9000+x | | 3x-8-2x=7+4x | | 90+(2x+14)(x+7)=180 | | 1b+2/3=2 | | 9+2x3=(11x3) | | 4a+7=-2 | | 5n+34=-2(-+7n) | | 9y-6=2(y+4) | | x+(x-180)=180 | | x+(x-180=180 | | 22+3x=5(2x+3( | | n+9n−6=8+8n | | 2x-17=129 | | 75+25x=300 | | 9x+4-3x=10x-7 | | 5j=6j+6 | | 0.054=9.1/x+9.1 | | 2+16x=21-(-7)x | | 11=193-u | | 208=74-v | | 12.8+x-8.8=4.1 | | 3+5n-2=7+n |

Equations solver categories