(2x+1)/5x=(6x-2)/(9x+2)

Simple and best practice solution for (2x+1)/5x=(6x-2)/(9x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)/5x=(6x-2)/(9x+2) equation:



(2x+1)/5x=(6x-2)/(9x+2)
We move all terms to the left:
(2x+1)/5x-((6x-2)/(9x+2))=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: (9x+2))!=0
x∈R
We calculate fractions
((2x+1)*(9x+2)))/55x^2+(-((6x-2)*5x)/55x^2=0
We calculate fractions
(((2x+1)*(9x+2)))*55x^2)/(55x^2+(*55x^2)+(-((6x-2)*5x)*55x^2)/(55x^2+(*55x^2)=0
We calculate terms in parentheses: +(-((6x-2)*5x)*55x^2)/(55x^2+(*55x^2), so:
-((6x-2)*5x)*55x^2)/(55x^2+(*55x^2
We multiply all the terms by the denominator
-((6x-2)*5x)*55x^2)+((*55x^2)*(55x^2
Back to the equation:
+(-((6x-2)*5x)*55x^2)+((*55x^2)*(55x^2)
We get rid of parentheses
(((2x+1)*(9x+2)))*55x^2)/(55x^2+*55x^2+(-((6x-2)*5x)*55x^2)+((*55x^2)*55x^2=0
We multiply all the terms by the denominator
(((2x+1)*(9x+2)))*55x^2)+(*55x^2)*(55x^2+((-((6x-2)*5x)*55x^2))*(55x^2+(((*55x^2)*55x^2)*(55x^2=0

See similar equations:

| 8h+4=84h= | | 5x-(2x-7)=25 | | Y=5×-6(x) | | 1/a+1/3a+8=22 | | Y=x,Y=10X | | t÷6-5=4 | | y=5×-6(×) | | C=0.6x2+0.52x+3200 | | 4(9y-5)=10(3y+17)-43 | | (x)=-5÷3 | | 2r-5•(-5r/2+11)=-26 | | 5/6x+20=10/11(x+20) | | (t)=1+5t÷25-t2 | | 12x=8-3x=-1 | | tan^2x-3 | | 36/y=3 | | (12+x)(120+3x)=2112 | | 3x+x+10=2x+14 | | 3x²+9x+1=0 | | x²-6*x+8=12 | | 3•(2x+5)-2•(x+5)=12x+5-2x | | 5=3x+6/x-2 | | 3x+6/x-2=5 | | 4x×x=35 | | (11x+9)°=135 | | X+2x+2=15+x | | x²-6x+8=12 | | 9+x=6.6+0.6x | | 9+x=6.6+0.6 | | x3-x=24 | | 3/5(2x-1)=1/4(5x-3) | | −3z2+27z−42=0 |

Equations solver categories