(2x+1)2=4(x2-1)+x-1

Simple and best practice solution for (2x+1)2=4(x2-1)+x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)2=4(x2-1)+x-1 equation:



(2x+1)2=4(x2-1)+x-1
We move all terms to the left:
(2x+1)2-(4(x2-1)+x-1)=0
We add all the numbers together, and all the variables
-(4(+x^2-1)+x-1)+(2x+1)2=0
We multiply parentheses
-(4(+x^2-1)+x-1)+4x+2=0
We calculate terms in parentheses: -(4(+x^2-1)+x-1), so:
4(+x^2-1)+x-1
We multiply parentheses
4x^2+x-4-1
We add all the numbers together, and all the variables
4x^2+x-5
Back to the equation:
-(4x^2+x-5)
We add all the numbers together, and all the variables
4x-(4x^2+x-5)+2=0
We get rid of parentheses
-4x^2+4x-x+5+2=0
We add all the numbers together, and all the variables
-4x^2+3x+7=0
a = -4; b = 3; c = +7;
Δ = b2-4ac
Δ = 32-4·(-4)·7
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11}{2*-4}=\frac{-14}{-8} =1+3/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11}{2*-4}=\frac{8}{-8} =-1 $

See similar equations:

| 6+3n=4-n | | 8(u-1)-4=4(2u-1)+9 | | 4x+2^{1+2x}=50 | | (2x-3)(4x-3)-((2x-7)(3x-2)=214 | | 7/(w+6)=-4 | | 7/w+6=-4 | | 16t^2=26t=5 | | 0.5=x/100 | | √x-6=4 | | x^2+x^2=81 | | 1.06=5x | | 9x2−16=0 | | 9x2−16=0. | | 2-6n=0.5 | | 2x/5+42=x | | 4x=1/2(120+2x) | | 4x=120+2x | | ((7+x)(7+x))+((7-x)(7-x))=130 | | 36+a=+80 | | 36a+57=180 | | 36+57a=180 | | | | 0-4=2x-4-4 | | 37=7+4y | | 4/6x=7/8 | | -0.45(40)+0.8x=0.3(40+x | | 0-5=4x+5-5 | | 0-5=4x+5 | | √5w-10=√2w-1 | | 2i(7-2i)=0 | | 3y^2-8y+1=0 | | 3y^-8y+1=0 |

Equations solver categories