If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+1)=(x2-5x+2)
We move all terms to the left:
(2x+1)-((x2-5x+2))=0
We add all the numbers together, and all the variables
-((+x^2-5x+2))+(2x+1)=0
We get rid of parentheses
-((+x^2-5x+2))+2x+1=0
We calculate terms in parentheses: -((+x^2-5x+2)), so:We add all the numbers together, and all the variables
(+x^2-5x+2)
We get rid of parentheses
x^2-5x+2
Back to the equation:
-(x^2-5x+2)
2x-(x^2-5x+2)+1=0
We get rid of parentheses
-x^2+2x+5x-2+1=0
We add all the numbers together, and all the variables
-1x^2+7x-1=0
a = -1; b = 7; c = -1;
Δ = b2-4ac
Δ = 72-4·(-1)·(-1)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{5}}{2*-1}=\frac{-7-3\sqrt{5}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{5}}{2*-1}=\frac{-7+3\sqrt{5}}{-2} $
| (64.2×y)+8.3=(-27)+(14.2×y) | | x(2x-4)=(2x+3)(x-7) | | 3+7x=7x+2+1 | | (3x+4)+x=2x—5 | | -30x-60=-30x-60 | | f(-1)=5 | | (c-3)=(c2-2c+3) | | f(0)=5 | | -17z+13z+-17=-5 | | (7•9)=63-t | | -17z+13z+-17z=-5 | | 24-4(x-3)=x+1 | | S(50=x/18 | | 9.04x+3.59(9x-5)=12.07x+.5614 | | 2n+12.5=48.5 | | 1/5(10+15x=) | | 4=7-3(4t+1) | | 15-2x=8+5x | | (M+3)=(2m-1) | | 9.02x+3.57(7x-4)=12.03x+0.5612 | | (12*3)=30+x | | 0.76x+24=1.19x | | 10(x+2)-5(x+6)=0 | | -3x+12=12+7x | | 8^2n=64^n+2 | | X2+6x=x+14 | | (3x-10)=-0.4 | | 58-x=8*6 | | -5(v+3)=6v+40 | | -8y+8=-3(y-1) | | -3(4x+1)=3(-2x-6) | | 9(w-8)=-5w-30 |