If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+15)x=180
We move all terms to the left:
(2x+15)x-(180)=0
We multiply parentheses
2x^2+15x-180=0
a = 2; b = 15; c = -180;
Δ = b2-4ac
Δ = 152-4·2·(-180)
Δ = 1665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1665}=\sqrt{9*185}=\sqrt{9}*\sqrt{185}=3\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{185}}{2*2}=\frac{-15-3\sqrt{185}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{185}}{2*2}=\frac{-15+3\sqrt{185}}{4} $
| 2a-2a+4a-2a=20 | | 1/2x+5/4=3+7/6x | | 1/2x+5/4=3+7/6 | | -x+13=2 | | x=x*20/100+1000 | | 2x+4=1/2+x | | -12v=-10 | | -2x-5(-4x+4)=-128 | | 1/2(x+7)-1=6 | | 3+3n=n=18 | | 52=w/5 | | 5x÷(x^2+9)=0 | | 4(x+0.1)=1.8 | | 4y-5=20+15 | | 36x=24√2 | | (5÷x^2)-(10÷x)+2=0 | | k2+5=41 | | 2x+4=-3x-7 | | 5x-2=2-3x | | -7x-12+9x+17=6 | | x-2.5=15 | | 8y+5=5y5+2 | | 1/12(4x-3)=1/4(2x+1) | | 720=(x+10)+150+90+x+x+x | | 1.88+7n=9.5-4n | | 2-7=13-8p | | (16+x)8=184 | | 31+6x=-7(2-3x) | | 4x2−16x+12=0 | | Y+2x-10=180 | | -4-x+3=-5(x+1)+12 | | 3r-2r-3r=12 |