(2x+2)(3x+1)+52=180

Simple and best practice solution for (2x+2)(3x+1)+52=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+2)(3x+1)+52=180 equation:



(2x+2)(3x+1)+52=180
We move all terms to the left:
(2x+2)(3x+1)+52-(180)=0
We add all the numbers together, and all the variables
(2x+2)(3x+1)-128=0
We multiply parentheses ..
(+6x^2+2x+6x+2)-128=0
We get rid of parentheses
6x^2+2x+6x+2-128=0
We add all the numbers together, and all the variables
6x^2+8x-126=0
a = 6; b = 8; c = -126;
Δ = b2-4ac
Δ = 82-4·6·(-126)
Δ = 3088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3088}=\sqrt{16*193}=\sqrt{16}*\sqrt{193}=4\sqrt{193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{193}}{2*6}=\frac{-8-4\sqrt{193}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{193}}{2*6}=\frac{-8+4\sqrt{193}}{12} $

See similar equations:

| 5/x-2=3x | | |k+4/2|=10 | | k+4/2=10 | | 300x=89 | | 4x-5+47=180 | | 4(x-9)+4=32 | | x-120*(0.98-x)/90=0 | | x-120*(0.98-x)/x=0 | | 90x-120*0.98-x=0 | | x90-120*(0.98-x)=0 | | (8x-5)/(7x+1)=-4/5 | | 90x-120*98-x=0 | | -3(y+7)=-5y-7 | | -8w+2=6(w-9) | | 90x=120*(0.98-x) | | -3(y+4)=-7y-8 | | (x+1)=4x-2 | | 90/120=0.98-x/x | | u/6=7/5 | | 32=3(y+6)-5y | | 7(u-6)+2u=39 | | -21=8(v+7)+3v | | 3=-2/5+v | | 2x+5x-16x-7x=20 | | y+2/5=1/6 | | 11(x+3)=55 | | -7/9=v-3 | | x=5*(60-x) | | 9x/2+4=5x/2-8 | | 15(5c-7)=9c-9 | | 9x-12x=7+8 | | 5u=-15/8 |

Equations solver categories