(2x+2)*(3x+4)=50

Simple and best practice solution for (2x+2)*(3x+4)=50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+2)*(3x+4)=50 equation:


Simplifying
(2x + 2)(3x + 4) = 50

Reorder the terms:
(2 + 2x)(3x + 4) = 50

Reorder the terms:
(2 + 2x)(4 + 3x) = 50

Multiply (2 + 2x) * (4 + 3x)
(2(4 + 3x) + 2x * (4 + 3x)) = 50
((4 * 2 + 3x * 2) + 2x * (4 + 3x)) = 50
((8 + 6x) + 2x * (4 + 3x)) = 50
(8 + 6x + (4 * 2x + 3x * 2x)) = 50
(8 + 6x + (8x + 6x2)) = 50

Combine like terms: 6x + 8x = 14x
(8 + 14x + 6x2) = 50

Solving
8 + 14x + 6x2 = 50

Solving for variable 'x'.

Reorder the terms:
8 + -50 + 14x + 6x2 = 50 + -50

Combine like terms: 8 + -50 = -42
-42 + 14x + 6x2 = 50 + -50

Combine like terms: 50 + -50 = 0
-42 + 14x + 6x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-21 + 7x + 3x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-21 + 7x + 3x2)' equal to zero and attempt to solve: Simplifying -21 + 7x + 3x2 = 0 Solving -21 + 7x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -7 + 2.333333333x + x2 = 0 Move the constant term to the right: Add '7' to each side of the equation. -7 + 2.333333333x + 7 + x2 = 0 + 7 Reorder the terms: -7 + 7 + 2.333333333x + x2 = 0 + 7 Combine like terms: -7 + 7 = 0 0 + 2.333333333x + x2 = 0 + 7 2.333333333x + x2 = 0 + 7 Combine like terms: 0 + 7 = 7 2.333333333x + x2 = 7 The x term is 2.333333333x. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333x + 1.361111112 + x2 = 7 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333x + x2 = 7 + 1.361111112 Combine like terms: 7 + 1.361111112 = 8.361111112 1.361111112 + 2.333333333x + x2 = 8.361111112 Factor a perfect square on the left side: (x + 1.166666667)(x + 1.166666667) = 8.361111112 Calculate the square root of the right side: 2.891558596 Break this problem into two subproblems by setting (x + 1.166666667) equal to 2.891558596 and -2.891558596.

Subproblem 1

x + 1.166666667 = 2.891558596 Simplifying x + 1.166666667 = 2.891558596 Reorder the terms: 1.166666667 + x = 2.891558596 Solving 1.166666667 + x = 2.891558596 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 2.891558596 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 2.891558596 + -1.166666667 x = 2.891558596 + -1.166666667 Combine like terms: 2.891558596 + -1.166666667 = 1.724891929 x = 1.724891929 Simplifying x = 1.724891929

Subproblem 2

x + 1.166666667 = -2.891558596 Simplifying x + 1.166666667 = -2.891558596 Reorder the terms: 1.166666667 + x = -2.891558596 Solving 1.166666667 + x = -2.891558596 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -2.891558596 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -2.891558596 + -1.166666667 x = -2.891558596 + -1.166666667 Combine like terms: -2.891558596 + -1.166666667 = -4.058225263 x = -4.058225263 Simplifying x = -4.058225263

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.724891929, -4.058225263}

Solution

x = {1.724891929, -4.058225263}

See similar equations:

| 11xy=(x)y | | -6.2x+6=x-8.4 | | 8b=56+15b | | y+(y+6)(-6)=y-6 | | 18x+24y= | | -(7-3x)=4(x+2) | | 1.8=5-x+4.2x | | x+1=11x | | 25a+75b+2c=0 | | 7.6x-4=x+15.8 | | -7x-18+4x=21 | | -8x+2(4b-7)=7(x+6) | | -5(2r-.3)+.5(4r+3)=64 | | -3(7p+5)-11(-5-p)=-2p+12p | | -5+7.9x-16=9.4x | | -4=-2(0)-4 | | 60x+30(6-x)=246 | | 0.6x^2+7x+20=0 | | 25x^2+7x-96=0 | | -6-7(c+10)=x | | 56x^2+45=2222 | | 8/11(n-10)=1.8 | | 70x-30(7-x)=426 | | 67x+6=645 | | x-3(x+2)-2=x+4 | | -13+5(y-4)=4(y-8) | | -62=-(-x-3)-6(4x+6) | | 3x^5+15x=18x^2 | | (n+3)+2= | | 3v^2+3v-13=-3+2v^2 | | 26d+2377960=2067959+125d | | 3(2n-1)-5(4n+3)=10 |

Equations solver categories