(2x+3)(4x+5)=(7x-6)(2x+3)

Simple and best practice solution for (2x+3)(4x+5)=(7x-6)(2x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+3)(4x+5)=(7x-6)(2x+3) equation:



(2x+3)(4x+5)=(7x-6)(2x+3)
We move all terms to the left:
(2x+3)(4x+5)-((7x-6)(2x+3))=0
We multiply parentheses ..
(+8x^2+10x+12x+15)-((7x-6)(2x+3))=0
We calculate terms in parentheses: -((7x-6)(2x+3)), so:
(7x-6)(2x+3)
We multiply parentheses ..
(+14x^2+21x-12x-18)
We get rid of parentheses
14x^2+21x-12x-18
We add all the numbers together, and all the variables
14x^2+9x-18
Back to the equation:
-(14x^2+9x-18)
We get rid of parentheses
8x^2-14x^2+10x+12x-9x+15+18=0
We add all the numbers together, and all the variables
-6x^2+13x+33=0
a = -6; b = 13; c = +33;
Δ = b2-4ac
Δ = 132-4·(-6)·33
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{961}=31$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-31}{2*-6}=\frac{-44}{-12} =3+2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+31}{2*-6}=\frac{18}{-12} =-1+1/2 $

See similar equations:

| |-5x|+3=33 | | U=3x/5 | | 2(x-3)=3(x=5) | | 11=2(5z+6) | | 5²h=1.25 | | 54b=15 | | 4f+5=15 | | (2y-1)/3=3 | | 12+5x-8=9x+8-25x | | 3=5(7u+15) | | 12=3k+11 | | q/5=12 | | 15=9(2q-14) | | x+(x-15000)+((x-15000)/5))=180000 | | (4^2x-1)*(2^x)=16^x | | 12=2d+9 | | 166=86-w | | 8l-10=3(6-2l) | | 2.4/y=24 | | 4m-(2+12)=m(2-6)-9 | | 3xx4x-2=12 | | 18+m=40 | | 7x²+2x=1 | | 3x²+5x+6=0 | | 4.2=p^2+4p | | x^2+0.5x-0.006=0 | | e2=9e-14 | | x^2=(x-1)^2+2x+1 | | √9-x=9-x | | 3/x+1-3/7x+7=-6 | | 3(k-5)-2(k+2)-14=24 | | n-2-1=1 |

Equations solver categories