(2x+3)(4x-8)=(7x+1)(4x-8)

Simple and best practice solution for (2x+3)(4x-8)=(7x+1)(4x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+3)(4x-8)=(7x+1)(4x-8) equation:



(2x+3)(4x-8)=(7x+1)(4x-8)
We move all terms to the left:
(2x+3)(4x-8)-((7x+1)(4x-8))=0
We multiply parentheses ..
(+8x^2-16x+12x-24)-((7x+1)(4x-8))=0
We calculate terms in parentheses: -((7x+1)(4x-8)), so:
(7x+1)(4x-8)
We multiply parentheses ..
(+28x^2-56x+4x-8)
We get rid of parentheses
28x^2-56x+4x-8
We add all the numbers together, and all the variables
28x^2-52x-8
Back to the equation:
-(28x^2-52x-8)
We get rid of parentheses
8x^2-28x^2-16x+12x+52x-24+8=0
We add all the numbers together, and all the variables
-20x^2+48x-16=0
a = -20; b = 48; c = -16;
Δ = b2-4ac
Δ = 482-4·(-20)·(-16)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-32}{2*-20}=\frac{-80}{-40} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+32}{2*-20}=\frac{-16}{-40} =2/5 $

See similar equations:

| 10x=45−5x | | 100=y+42 | | -4=c/4 | | 7a-2(a-2)=-16 | | 3x+3^x=342 | | 3x+3^x=341 | | (x-47)(x+11)=0 | | X*2-20=x | | 12÷3x=7 | | 14(x-0,5)=6x-35 | | n*2-4n+4=4 | | 8x=6x+28 | | 3^x+2+5*3^x-4*3^x-1=342 | | 4n^2=10 | | X*2=-8+6x | | X+(x+2)+(x+3)=-78 | | (x-1)^4=2 | | F(x)=6x`+3 | | 2(6b+5)=2+4b | | m+4m-4m+7= | | F(x)=6x^+3 | | -3n-1=n-5 | | 20-3(2x-7)=5(x+5)-5 | | 12-a-4a=a-6 | | 6x-5=5x+20 | | 5x+4-4x-4=8 | | 10t-10t^2=0 | | (5x+4)-(4x+4)=8 | | 17/10x+2/5=8/5x | | 10t-10t^2=2.5 | | X+0.06x=7013496 | | X^2-8x-46=-5 |

Equations solver categories