(2x+3)(x-1)-(x+4)(x-2)=9-x

Simple and best practice solution for (2x+3)(x-1)-(x+4)(x-2)=9-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+3)(x-1)-(x+4)(x-2)=9-x equation:



(2x+3)(x-1)-(x+4)(x-2)=9-x
We move all terms to the left:
(2x+3)(x-1)-(x+4)(x-2)-(9-x)=0
We add all the numbers together, and all the variables
(2x+3)(x-1)-(x+4)(x-2)-(-1x+9)=0
We get rid of parentheses
(2x+3)(x-1)-(x+4)(x-2)+1x-9=0
We multiply parentheses ..
(+2x^2-2x+3x-3)-(x+4)(x-2)+1x-9=0
We add all the numbers together, and all the variables
(+2x^2-2x+3x-3)+x-(x+4)(x-2)-9=0
We get rid of parentheses
2x^2-2x+3x+x-(x+4)(x-2)-3-9=0
We multiply parentheses ..
2x^2-(+x^2-2x+4x-8)-2x+3x+x-3-9=0
We add all the numbers together, and all the variables
2x^2-(+x^2-2x+4x-8)+2x-12=0
We get rid of parentheses
2x^2-x^2+2x-4x+2x+8-12=0
We add all the numbers together, and all the variables
x^2-4=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $

See similar equations:

| 14=18-4g | | 6=k/72 | | 8-3v=-13 | | n–5=3n+25 | | 4v-9=44 | | -9p+3=-51 | | a. | | x11−14=6 | | 3(3x−4)=1/4⎯(32x+56) | | 11z–14=19 | | 6q-11=21 | | -8(-8x-6)=-(6x-22) | | 400x+6000=10000 | | -63=-5x+7 | | 9+6n=n-5-6 | | 45=5x+12 | | 2+8(7+x)=28 | | -15+x=31 | | 0=1-x/2x+4 | | 4b+9=2(b+2)+b | | x=9-4x | | 8+4n=6+5n | | -2m+11=11 | | 9=-9(s-5 | | 3k+24=7(k+4) | | -5m-3m=16 | | -5(7+x)=-20 | | 12=4p-2p | | -7(-11+k)=-49 | | F(c)=9/5c+32 | | -12x+2=-190 | | 0=5b+2b |

Equations solver categories