(2x+3)(x-2)+2x=-2(x+1)-2(x+2)

Simple and best practice solution for (2x+3)(x-2)+2x=-2(x+1)-2(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+3)(x-2)+2x=-2(x+1)-2(x+2) equation:



(2x+3)(x-2)+2x=-2(x+1)-2(x+2)
We move all terms to the left:
(2x+3)(x-2)+2x-(-2(x+1)-2(x+2))=0
We add all the numbers together, and all the variables
2x+(2x+3)(x-2)-(-2(x+1)-2(x+2))=0
We multiply parentheses ..
(+2x^2-4x+3x-6)+2x-(-2(x+1)-2(x+2))=0
We calculate terms in parentheses: -(-2(x+1)-2(x+2)), so:
-2(x+1)-2(x+2)
We multiply parentheses
-2x-2x-2-4
We add all the numbers together, and all the variables
-4x-6
Back to the equation:
-(-4x-6)
We get rid of parentheses
2x^2-4x+3x+2x+4x-6+6=0
We add all the numbers together, and all the variables
2x^2+5x=0
a = 2; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·2·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*2}=\frac{-10}{4} =-2+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*2}=\frac{0}{4} =0 $

See similar equations:

| 2x-8+2x+2=90 | | 8x−12=4 | | 17z-15=0 | | 15x-15=21^2-7 | | 7m+21=21m+-14 | | 7x+7=9x-25 | | 7m+-21=28m+-14 | | 7x-7=36^2-6 | | -7m+21=-28m+14 | | 2z+4(3z+5)=10 | | 7m+21=28+14m | | 125+13x=21x75 | | 2(-x+4)=2x-8 | | x/5+3=-8+x | | 7m-21=28m+14 | | 7=-3-5c | | 1/8^-3a=512^3a | | 7x^2/3=1200 | | 9x+22=-8x+56 | | |5t+30|=10 | | X2+20x+1=0 | | 7a+-21=28a+-14 | | 4-6y=52 | | 7a+21=28a+14 | | 4.9=t+t^2 | | (6x+7)^-1-(5x+1)^-1=(4x-11)^-1 | | 12x-12=95 | | -(3x-21)=7 | | 5n+5n= | | 12=3-8x | | 4y=228=352 | | 3(3r-2)-4(r-2)=5r+2 |

Equations solver categories