If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+3)-(5x-7)/6x+11=8/15
We move all terms to the left:
(2x+3)-(5x-7)/6x+11-(8/15)=0
Domain of the equation: 6x!=0We add all the numbers together, and all the variables
x!=0/6
x!=0
x∈R
(2x+3)-(5x-7)/6x+11-(+8/15)=0
We get rid of parentheses
2x-(5x-7)/6x+3+11-8/15=0
We calculate fractions
2x+(-75x+105)/90x+(-48x)/90x+3+11=0
We add all the numbers together, and all the variables
2x+(-75x+105)/90x+(-48x)/90x+14=0
We multiply all the terms by the denominator
2x*90x+(-75x+105)+(-48x)+14*90x=0
Wy multiply elements
180x^2+(-75x+105)+(-48x)+1260x=0
We get rid of parentheses
180x^2-75x-48x+1260x+105=0
We add all the numbers together, and all the variables
180x^2+1137x+105=0
a = 180; b = 1137; c = +105;
Δ = b2-4ac
Δ = 11372-4·180·105
Δ = 1217169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1217169}=\sqrt{9*135241}=\sqrt{9}*\sqrt{135241}=3\sqrt{135241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1137)-3\sqrt{135241}}{2*180}=\frac{-1137-3\sqrt{135241}}{360} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1137)+3\sqrt{135241}}{2*180}=\frac{-1137+3\sqrt{135241}}{360} $
| x/12=14 | | 9z+8-7z=44-7z | | x/4=12 | | 4g−g=9 | | -2(y-4y)+9=-3(4y-y)+2+14y | | 10k-7k=12 | | 16h-6h=20 | | 2x+5/12=3x-2/6 | | 1/2(700-x)+3x=3600 | | 3x/5=2/4 | | 3(5x+4)-20=2(x+3) | | (6r-4)(-3r+5)(.5+6r)=0 | | 1482=n(n+1) | | 16(2x-7)=4(6x+1) | | 3(4x-8)=12(x-12) | | 7(2n+1)=9(9n+8)+1 | | x+5/8=x/4+20 | | 6x+6-180=2x | | 6x+6/180=2x | | -29x+-31x+21x+28x+21x=30 | | 5x+(945^4)=x+5+5+5+5+5+x+5+x+5+x+5+x+5+x | | 3(x-6)-3=-3(-5x+3)-4x | | 4(x+4)+8=x+4 | | 6x+6=180-2x | | 6x+6=180+2x | | 0.50x+0.05(12-x)=0(-3) | | 6x+6x=2x | | 0.06(y-8)+0.20y=0.10y-1.8 | | 9(x^2-2/3-1/3)=0 | | 9/k-5=6/k | | 6x+6+2x=2x | | G(n)=3n^2-2n |