(2x+3y+4)dx+(3x+4y+5)dy=0

Simple and best practice solution for (2x+3y+4)dx+(3x+4y+5)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+3y+4)dx+(3x+4y+5)dy=0 equation:


Simplifying
(2x + 3y + 4) * dx + (3x + 4y + 5) * dy = 0

Reorder the terms:
(4 + 2x + 3y) * dx + (3x + 4y + 5) * dy = 0

Reorder the terms for easier multiplication:
dx(4 + 2x + 3y) + (3x + 4y + 5) * dy = 0
(4 * dx + 2x * dx + 3y * dx) + (3x + 4y + 5) * dy = 0

Reorder the terms:
(4dx + 3dxy + 2dx2) + (3x + 4y + 5) * dy = 0
(4dx + 3dxy + 2dx2) + (3x + 4y + 5) * dy = 0

Reorder the terms:
4dx + 3dxy + 2dx2 + (5 + 3x + 4y) * dy = 0

Reorder the terms for easier multiplication:
4dx + 3dxy + 2dx2 + dy(5 + 3x + 4y) = 0
4dx + 3dxy + 2dx2 + (5 * dy + 3x * dy + 4y * dy) = 0

Reorder the terms:
4dx + 3dxy + 2dx2 + (3dxy + 5dy + 4dy2) = 0
4dx + 3dxy + 2dx2 + (3dxy + 5dy + 4dy2) = 0

Reorder the terms:
4dx + 3dxy + 3dxy + 2dx2 + 5dy + 4dy2 = 0

Combine like terms: 3dxy + 3dxy = 6dxy
4dx + 6dxy + 2dx2 + 5dy + 4dy2 = 0

Solving
4dx + 6dxy + 2dx2 + 5dy + 4dy2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(4x + 6xy + 2x2 + 5y + 4y2) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(4x + 6xy + 2x2 + 5y + 4y2)' equal to zero and attempt to solve: Simplifying 4x + 6xy + 2x2 + 5y + 4y2 = 0 Solving 4x + 6xy + 2x2 + 5y + 4y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-4x' to each side of the equation. 4x + 6xy + 2x2 + 5y + -4x + 4y2 = 0 + -4x Reorder the terms: 4x + -4x + 6xy + 2x2 + 5y + 4y2 = 0 + -4x Combine like terms: 4x + -4x = 0 0 + 6xy + 2x2 + 5y + 4y2 = 0 + -4x 6xy + 2x2 + 5y + 4y2 = 0 + -4x Remove the zero: 6xy + 2x2 + 5y + 4y2 = -4x Add '-6xy' to each side of the equation. 6xy + 2x2 + 5y + -6xy + 4y2 = -4x + -6xy Reorder the terms: 6xy + -6xy + 2x2 + 5y + 4y2 = -4x + -6xy Combine like terms: 6xy + -6xy = 0 0 + 2x2 + 5y + 4y2 = -4x + -6xy 2x2 + 5y + 4y2 = -4x + -6xy Add '-2x2' to each side of the equation. 2x2 + 5y + -2x2 + 4y2 = -4x + -6xy + -2x2 Reorder the terms: 2x2 + -2x2 + 5y + 4y2 = -4x + -6xy + -2x2 Combine like terms: 2x2 + -2x2 = 0 0 + 5y + 4y2 = -4x + -6xy + -2x2 5y + 4y2 = -4x + -6xy + -2x2 Add '-5y' to each side of the equation. 5y + -5y + 4y2 = -4x + -6xy + -2x2 + -5y Combine like terms: 5y + -5y = 0 0 + 4y2 = -4x + -6xy + -2x2 + -5y 4y2 = -4x + -6xy + -2x2 + -5y Add '-4y2' to each side of the equation. 4y2 + -4y2 = -4x + -6xy + -2x2 + -5y + -4y2 Combine like terms: 4y2 + -4y2 = 0 0 = -4x + -6xy + -2x2 + -5y + -4y2 Simplifying 0 = -4x + -6xy + -2x2 + -5y + -4y2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 4x+32=2(3x-1) | | x+(x+2)+(x+4)+(x+6)+(x+8)=455 | | 8w-12=4(w-6) | | 8b+3b=-1 | | 3ydx=(3x^2-1)(dx-dy) | | 2(3j-2)+6=4(1+j) | | 3c*-d= | | 7+30x=15+13 | | x^2+8x+64=48 | | y=-0.625+87 | | lx+4l=11 | | 2x^2+3-7x=0 | | y=4.9x-5 | | 8x=-9+-3y | | -5(x+2)=-x-2 | | 400=4x^2-24x+32 | | x-4=70 | | 200=p(1+.06)*2 | | 300+0.04x=600 | | 2(x-2)=3(x-3) | | 4x+13-7x=15-18x+15x-2 | | 3x+2y=o | | 142+10x=22x+48 | | x+2x+3=6 | | -6(1-7k)=78 | | 100=60+60(.5)t | | 8z-7=-3z-43+5z | | 0.5(x-3)+0.33(x+1)=8 | | 4.9=-5+x | | -3(1-8m)+7m=-65 | | 5a=11a+30 | | 2x-49x=2x-49 |

Equations solver categories