(2x+5)(3x+15)=(x+10)

Simple and best practice solution for (2x+5)(3x+15)=(x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+5)(3x+15)=(x+10) equation:



(2x+5)(3x+15)=(x+10)
We move all terms to the left:
(2x+5)(3x+15)-((x+10))=0
We multiply parentheses ..
(+6x^2+30x+15x+75)-((x+10))=0
We calculate terms in parentheses: -((x+10)), so:
(x+10)
We get rid of parentheses
x+10
Back to the equation:
-(x+10)
We get rid of parentheses
6x^2+30x+15x-x+75-10=0
We add all the numbers together, and all the variables
6x^2+44x+65=0
a = 6; b = 44; c = +65;
Δ = b2-4ac
Δ = 442-4·6·65
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-2\sqrt{94}}{2*6}=\frac{-44-2\sqrt{94}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+2\sqrt{94}}{2*6}=\frac{-44+2\sqrt{94}}{12} $

See similar equations:

| 3x/4=-12/00 | | 4y-4y=0 | | 2+r=7+6r* | | 0.22m+7.2m=0.1m+8.4 | | 6=–3(t+6) | | x+28+152=180 | | 5n+5=2n+2 | | 5(n+1)=2(n+1) | | g+5/4=-3 | | 6n+12=-8 | | g+54=–3 | | -60x+32=-32x+60 | | 6(6z+2)=28 | | -2x(6+6x)=48 | | 2u+3=|4u+5| | | -120=(36+12g) | | 7x+6=13x-12 | | 3x^2+5x-7x=-1* | | -2(-6x-8)=-92 | | -20=1/6(36+12g) | | -5(4x-8)=-60 | | -7(10+5x)=-70 | | 3(5c+1)=4(3c+2) | | -4(-9+7x)=176 | | 9.)-4(-1x+4)=-56 | | 7m+6=13m-12 | | y=3*4-6 | | 2(-10-7x)=-48 | | -7(3-3x)=231 | | 6(9+3x)=36 | | 3t+7=-4 | | 6x-(3+8x=-11 |

Equations solver categories