(2x+5)(3x-10)=180

Simple and best practice solution for (2x+5)(3x-10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+5)(3x-10)=180 equation:



(2x+5)(3x-10)=180
We move all terms to the left:
(2x+5)(3x-10)-(180)=0
We multiply parentheses ..
(+6x^2-20x+15x-50)-180=0
We get rid of parentheses
6x^2-20x+15x-50-180=0
We add all the numbers together, and all the variables
6x^2-5x-230=0
a = 6; b = -5; c = -230;
Δ = b2-4ac
Δ = -52-4·6·(-230)
Δ = 5545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{5545}}{2*6}=\frac{5-\sqrt{5545}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{5545}}{2*6}=\frac{5+\sqrt{5545}}{12} $

See similar equations:

| 3x-5+6x+14=180 | | 26x+14=5(5x+2) | | k+1/8=7/8 | | -4b-7=-12 | | 4y-2y=7-12 | | y+2(y-5=2y+2 | | v^2-7v-5=−6v | | 24+-6n=54 | | 4y+5y=18 | | 10e-34=46 | | x^2+4x-484=0 | | (X-1)(x-5)=x2+4x-2 | | 5+2b=-(4b-5) | | 3/4x=1/3x+10 | | 4g+8=2g+40 | | n/10=90 | | 6b-7=12b+9 | | 8n^2=11n-12 | | 2w+6=3w+2 | | s-7/8=-3/4 | | 3x+25)=180 | | 8+6d=34 | | 0.3(10x+15)=3.8(0.2x+5) | | 20x=4(3x+72) | | -d+(-61)=107 | | 33x+42x=63 | | Z+4(2z+4)=15 | | 1=-3x+163 | | 4(5)-y=23 | | 21/3+w=42/9 | | 2=65-9k | | -n=5n=-8 |

Equations solver categories