(2x+5)(3x-2)=(x+1)

Simple and best practice solution for (2x+5)(3x-2)=(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+5)(3x-2)=(x+1) equation:



(2x+5)(3x-2)=(x+1)
We move all terms to the left:
(2x+5)(3x-2)-((x+1))=0
We multiply parentheses ..
(+6x^2-4x+15x-10)-((x+1))=0
We calculate terms in parentheses: -((x+1)), so:
(x+1)
We get rid of parentheses
x+1
Back to the equation:
-(x+1)
We get rid of parentheses
6x^2-4x+15x-x-10-1=0
We add all the numbers together, and all the variables
6x^2+10x-11=0
a = 6; b = 10; c = -11;
Δ = b2-4ac
Δ = 102-4·6·(-11)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{91}}{2*6}=\frac{-10-2\sqrt{91}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{91}}{2*6}=\frac{-10+2\sqrt{91}}{12} $

See similar equations:

| 5x-10-8=40-8 | | 22x+20=29x-8 | | 3x-23=2x-5 | | 3x+14=-4(8+5x) | | -11b=-11.2b-0.54 | | 6(9-3x)=72 | | 6(9-3x=72 | | 13n-16=10n+8 | | 6(9-3x0=72 | | h/5+40=49 | | 2(1y+3)=14 | | 30x+9=17x+399 | | 2d+29=97 | | -h=18+2h | | 4(j-80)=40 | | 3^2x+7=14 | | -1-1=4u-u | | 2-7(3-5x)=0 | | 9=2k-83 | | y=15(40) | | 16+7y=23 | | 6(2x-8)-3=6(x-7)+(3) | | 10=13-3f | | 3-7(6x+2)=8 | | 10-13=3f | | 390=40x | | t+26/10=3 | | 13.74+4.7s=0.6s-15.78 | | 13+5x+2=10 | | -20-8y-12=20+18y | | u/5-4=1 | | -10m-5m-1=-14m-20 |

Equations solver categories