(2x+5)(3x-5)=90

Simple and best practice solution for (2x+5)(3x-5)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+5)(3x-5)=90 equation:


Simplifying
(2x + 5)(3x + -5) = 90

Reorder the terms:
(5 + 2x)(3x + -5) = 90

Reorder the terms:
(5 + 2x)(-5 + 3x) = 90

Multiply (5 + 2x) * (-5 + 3x)
(5(-5 + 3x) + 2x * (-5 + 3x)) = 90
((-5 * 5 + 3x * 5) + 2x * (-5 + 3x)) = 90
((-25 + 15x) + 2x * (-5 + 3x)) = 90
(-25 + 15x + (-5 * 2x + 3x * 2x)) = 90
(-25 + 15x + (-10x + 6x2)) = 90

Combine like terms: 15x + -10x = 5x
(-25 + 5x + 6x2) = 90

Solving
-25 + 5x + 6x2 = 90

Solving for variable 'x'.

Reorder the terms:
-25 + -90 + 5x + 6x2 = 90 + -90

Combine like terms: -25 + -90 = -115
-115 + 5x + 6x2 = 90 + -90

Combine like terms: 90 + -90 = 0
-115 + 5x + 6x2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-19.16666667 + 0.8333333333x + x2 = 0

Move the constant term to the right:

Add '19.16666667' to each side of the equation.
-19.16666667 + 0.8333333333x + 19.16666667 + x2 = 0 + 19.16666667

Reorder the terms:
-19.16666667 + 19.16666667 + 0.8333333333x + x2 = 0 + 19.16666667

Combine like terms: -19.16666667 + 19.16666667 = 0.00000000
0.00000000 + 0.8333333333x + x2 = 0 + 19.16666667
0.8333333333x + x2 = 0 + 19.16666667

Combine like terms: 0 + 19.16666667 = 19.16666667
0.8333333333x + x2 = 19.16666667

The x term is 0.8333333333x.  Take half its coefficient (0.4166666667).
Square it (0.1736111111) and add it to both sides.

Add '0.1736111111' to each side of the equation.
0.8333333333x + 0.1736111111 + x2 = 19.16666667 + 0.1736111111

Reorder the terms:
0.1736111111 + 0.8333333333x + x2 = 19.16666667 + 0.1736111111

Combine like terms: 19.16666667 + 0.1736111111 = 19.3402777811
0.1736111111 + 0.8333333333x + x2 = 19.3402777811

Factor a perfect square on the left side:
(x + 0.4166666667)(x + 0.4166666667) = 19.3402777811

Calculate the square root of the right side: 4.397758268

Break this problem into two subproblems by setting 
(x + 0.4166666667) equal to 4.397758268 and -4.397758268.

Subproblem 1

x + 0.4166666667 = 4.397758268 Simplifying x + 0.4166666667 = 4.397758268 Reorder the terms: 0.4166666667 + x = 4.397758268 Solving 0.4166666667 + x = 4.397758268 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + x = 4.397758268 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + x = 4.397758268 + -0.4166666667 x = 4.397758268 + -0.4166666667 Combine like terms: 4.397758268 + -0.4166666667 = 3.9810916013 x = 3.9810916013 Simplifying x = 3.9810916013

Subproblem 2

x + 0.4166666667 = -4.397758268 Simplifying x + 0.4166666667 = -4.397758268 Reorder the terms: 0.4166666667 + x = -4.397758268 Solving 0.4166666667 + x = -4.397758268 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + x = -4.397758268 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + x = -4.397758268 + -0.4166666667 x = -4.397758268 + -0.4166666667 Combine like terms: -4.397758268 + -0.4166666667 = -4.8144249347 x = -4.8144249347 Simplifying x = -4.8144249347

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.9810916013, -4.8144249347}

See similar equations:

| 9x=78x | | (11+4)14=49 | | (3+4)14=49 | | (2+4)14=49 | | 48400(100-10)(100-10)=32400(100+10)(100+10) | | (7+4)14=49 | | 0.72x+1.5+3x=2x+9 | | 48400(100-x)(100-x)=32400(100+x)(100+x) | | 2x*x=16 | | 1.7x*x=16 | | (3x+4)(x-10)+(10-x)(x-8)=0 | | (x+4)14=49 | | 3=m-8 | | 5x+1200+1x=2700 | | 3=2n+11 | | 5x+1200+4x=2700 | | 3x+13=139 | | 3x+13=126 | | x-2/8=5 | | f(x)=x^2+p*x+q | | 1.4x*x=16 | | x^2+y^2+4x=5 | | 1.5x*x=16 | | https://www.vle.mathswatch.com/images/questions/question416.png | | x-.15=12000 | | 150(100+x)(100+x)=216*10000 | | 9/2=3w | | 48=3/8u | | 8x^-1/-1 | | 5x+3x+6y=40 | | 14x^2+39x-23=0 | | 150((100(100+x))(100(100+x)))=216 |

Equations solver categories