(2x+5)(x-3)=(x-3)(x-4)

Simple and best practice solution for (2x+5)(x-3)=(x-3)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+5)(x-3)=(x-3)(x-4) equation:



(2x+5)(x-3)=(x-3)(x-4)
We move all terms to the left:
(2x+5)(x-3)-((x-3)(x-4))=0
We multiply parentheses ..
(+2x^2-6x+5x-15)-((x-3)(x-4))=0
We calculate terms in parentheses: -((x-3)(x-4)), so:
(x-3)(x-4)
We multiply parentheses ..
(+x^2-4x-3x+12)
We get rid of parentheses
x^2-4x-3x+12
We add all the numbers together, and all the variables
x^2-7x+12
Back to the equation:
-(x^2-7x+12)
We get rid of parentheses
2x^2-x^2-6x+5x+7x-15-12=0
We add all the numbers together, and all the variables
x^2+6x-27=0
a = 1; b = 6; c = -27;
Δ = b2-4ac
Δ = 62-4·1·(-27)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-12}{2*1}=\frac{-18}{2} =-9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+12}{2*1}=\frac{6}{2} =3 $

See similar equations:

| 274=-x+156 | | 3m-5+3m+8=-6+3m | | -(2x+1)=8(x+2)-7 | | 0.99d=10.00+0.89d | | 14/7-2=h | | 13y=106 | | .12x-1.20=24.0 | | 2n+6=n/5-3 | | 10x=106 | | 1x-6=6-5 | | 5y-6-9y=3-2y+8 | | -15=2.5h | | 2.5x+7.7=4.7 | | 2(x-4)^=26 | | 125+12x=3500 | | 9x+7-6x=13 | | -5+6k=1+8k | | -(1+3n)-3=4n-18 | | x+90+46=180 | | -2x=2.9=-7x+4.1 | | 1/4x-1.5=2.75 | | 11m^2+2m=-10 | | 1/4x-5=2.75 | | 16-3x-22=8-4x | | g-7g+7=-2(2g+1)-2g=9 | | 8-7d=-3+4d | | .5t=125 | | x+7=-8-4 | | X^4+41x^2+0=400 | | 0.5t=135 | | 2/3y+5=7.5 | | -8n+6=14-7n+n |

Equations solver categories