(2x+6)(2x+1)=(3x-1)(3x-1)

Simple and best practice solution for (2x+6)(2x+1)=(3x-1)(3x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+6)(2x+1)=(3x-1)(3x-1) equation:



(2x+6)(2x+1)=(3x-1)(3x-1)
We move all terms to the left:
(2x+6)(2x+1)-((3x-1)(3x-1))=0
We multiply parentheses ..
(+4x^2+2x+12x+6)-((3x-1)(3x-1))=0
We calculate terms in parentheses: -((3x-1)(3x-1)), so:
(3x-1)(3x-1)
We multiply parentheses ..
(+9x^2-3x-3x+1)
We get rid of parentheses
9x^2-3x-3x+1
We add all the numbers together, and all the variables
9x^2-6x+1
Back to the equation:
-(9x^2-6x+1)
We get rid of parentheses
4x^2-9x^2+2x+12x+6x+6-1=0
We add all the numbers together, and all the variables
-5x^2+20x+5=0
a = -5; b = 20; c = +5;
Δ = b2-4ac
Δ = 202-4·(-5)·5
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{5}}{2*-5}=\frac{-20-10\sqrt{5}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{5}}{2*-5}=\frac{-20+10\sqrt{5}}{-10} $

See similar equations:

| 5(4-y)-3y=12 | | 2(y+4)=-2(2-y) | | 6h+15=99 | | -3+n/3=-6 | | 5n+18+3n+18=180 | | 6d-24=24 | | 3v=15/7 | | 79+x=90 | | |x-1|=7x-13 | | 3x-9=17x+19 | | C=34.95u+6.25 | | 4x+2+12x+8=90 | | a/4+7=14 | | -8=-6+m/2 | | Y+1=16-4y | | 3(x-5)+2x=15x+15 | | 5x3=13-3x | | (199t−5)/9−3=7.5 | | 4(y+2)+5=49 | | x^-7x=-10 | | 5x3-3=13-3x | | 3x+50=4x+32=180 | | 2=4+r/2 | | -5-9x=58 | | 4=-2y+36 | | 4(a+2)=14 | | 1/2(14x+8)=6x+8 | | 15+0.50m=25+025m | | -3p+20=-20-12p-14 | | 6-7n=-6-2n-7n | | 14n=15+11n | | -9b-16=-17b+8-4b |

Equations solver categories