(2x+6)(4x-7)=(6x-13)

Simple and best practice solution for (2x+6)(4x-7)=(6x-13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+6)(4x-7)=(6x-13) equation:



(2x+6)(4x-7)=(6x-13)
We move all terms to the left:
(2x+6)(4x-7)-((6x-13))=0
We multiply parentheses ..
(+8x^2-14x+24x-42)-((6x-13))=0
We calculate terms in parentheses: -((6x-13)), so:
(6x-13)
We get rid of parentheses
6x-13
Back to the equation:
-(6x-13)
We get rid of parentheses
8x^2-14x+24x-6x-42+13=0
We add all the numbers together, and all the variables
8x^2+4x-29=0
a = 8; b = 4; c = -29;
Δ = b2-4ac
Δ = 42-4·8·(-29)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{59}}{2*8}=\frac{-4-4\sqrt{59}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{59}}{2*8}=\frac{-4+4\sqrt{59}}{16} $

See similar equations:

| x(5-2)=4x-x | | 90+54+y=180 | | 5(y-2)7y=-32 | | 16(x+5)=4(4x+2)+72 | | 4(x+4)-7=4(x-1) | | 5n+26=-29 | | g4− 2=2 | | 2x+15=7x-47 | | 3/4+2x-3=-1/4x+21 | | x/3+4x=1/5 | | H(t)=-16t^2+3,136 | | 21−4j=5 | | 2y-3=9y+11 | | 3.6x-10.78=2.9 | | 17-4(6-n)=-59 | | 2^3x-2=1024 | | 38−4x=2(x−5) | | 6x+1-x=19 | | x/4-9=-9 | | (3+4)+7=d+(4+7) | | 35/65=x/(x+200) | | 7.4=t/4.5 | | 12x=−5 | | -19x=76 | | x^2+x-4=-2x-1 | | 9x-3/5=13/15 | | 9x=−7 | | 5x+15-2x=455-x | | 9r-5=74 | | x+6/7=−6 | | x+67=−/ | | x+67=−6 |

Equations solver categories