If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+6)(8x-102)=90
We move all terms to the left:
(2x+6)(8x-102)-(90)=0
We multiply parentheses ..
(+16x^2-204x+48x-612)-90=0
We get rid of parentheses
16x^2-204x+48x-612-90=0
We add all the numbers together, and all the variables
16x^2-156x-702=0
a = 16; b = -156; c = -702;
Δ = b2-4ac
Δ = -1562-4·16·(-702)
Δ = 69264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{69264}=\sqrt{144*481}=\sqrt{144}*\sqrt{481}=12\sqrt{481}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-156)-12\sqrt{481}}{2*16}=\frac{156-12\sqrt{481}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-156)+12\sqrt{481}}{2*16}=\frac{156+12\sqrt{481}}{32} $
| 2(2x-3)=15+x | | 20+2x=L | | 2(-3)+3x=12 | | 3x+12=32-5x | | 2(-6)+3x=12 | | 50=10+8r | | F(5)=4x+13 | | 33/k=11 | | (12x-8)=104° | | 7y+6−1+12y=24y | | 3(8x-2)=2(10x-13) | | 3x+60=8 | | 6v=240 | | 2x+54=8x+6 | | 27=1-5x+61 | | 5x-60+2x-40=180 | | 2(-v+5)=-5(v+10) | | 1/3(x+9(=12 | | 109-y=222 | | -x-x+5=-19 | | 21v=63 | | -8=2r+1/2 | | 9+24x−8x=4+16x | | 115=-v+279 | | X2-20x+51=0 | | 4f=160 | | 3(x3)+12=4x-2 | | 75−n=60 | | 24+9t=78 | | (6x+10)=140 | | -5+3y=22 | | 8b+21=4b-3 |