(2x+6x2)=(4x+3)+2

Simple and best practice solution for (2x+6x2)=(4x+3)+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+6x2)=(4x+3)+2 equation:



(2x+6x^2)=(4x+3)+2
We move all terms to the left:
(2x+6x^2)-((4x+3)+2)=0
We get rid of parentheses
6x^2+2x-((4x+3)+2)=0
We calculate terms in parentheses: -((4x+3)+2), so:
(4x+3)+2
We get rid of parentheses
4x+3+2
We add all the numbers together, and all the variables
4x+5
Back to the equation:
-(4x+5)
We get rid of parentheses
6x^2+2x-4x-5=0
We add all the numbers together, and all the variables
6x^2-2x-5=0
a = 6; b = -2; c = -5;
Δ = b2-4ac
Δ = -22-4·6·(-5)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{31}}{2*6}=\frac{2-2\sqrt{31}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{31}}{2*6}=\frac{2+2\sqrt{31}}{12} $

See similar equations:

| 1/2f-2=16f | | 11=5–3x | | -4x–2=18 | | r3–16=-15 | | 4–x=7 | | √​4z+9​​​=z+1 | | 6h-(9-3h)=6-3h+2 | | x+9.4=-3.2 | | −3p+8=5−(6p+1) | | Y-9x=9 | | -2(2t=3)=10 | | -2(3x-4)-3=-2-1 | | 5(2b-3)=7b+3 | | 3x=5=2x+7 | | 20-30x=36+28x | | 1.45-1.5=n | | 11x+96=217 | | -10y=-9y-y | | -10(s+1)=-6 | | 7a+5=3a+13 | | -10y=-9y−y | | 9z=9+9z | | 5y-11+4y=-65 | | 20+3b=17 | | 30=-5(2x+4) | | -3n–8n=50 | | 4x+9=3x+84x+9=3x+8 | | 4x^2+x^2-3=0 | | x=1/5x-4/5 | | 8(t+4)=56 | | -3n–8n+n=50 | | 6(x+2)-3x+3=81 |

Equations solver categories