(2x+y)(2x+y)(2x+y)(2x+y)=

Simple and best practice solution for (2x+y)(2x+y)(2x+y)(2x+y)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+y)(2x+y)(2x+y)(2x+y)= equation:


Simplifying
(2x + y)(2x + y)(2x + y)(2x + y) = 0

Multiply (2x + y) * (2x + y)
(2x * (2x + y) + y(2x + y))(2x + y)(2x + y) = 0
((2x * 2x + y * 2x) + y(2x + y))(2x + y)(2x + y) = 0

Reorder the terms:
((2xy + 4x2) + y(2x + y))(2x + y)(2x + y) = 0
((2xy + 4x2) + y(2x + y))(2x + y)(2x + y) = 0
(2xy + 4x2 + (2x * y + y * y))(2x + y)(2x + y) = 0
(2xy + 4x2 + (2xy + y2))(2x + y)(2x + y) = 0

Reorder the terms:
(2xy + 2xy + 4x2 + y2)(2x + y)(2x + y) = 0

Combine like terms: 2xy + 2xy = 4xy
(4xy + 4x2 + y2)(2x + y)(2x + y) = 0

Multiply (4xy + 4x2 + y2) * (2x + y)
(4xy * (2x + y) + 4x2 * (2x + y) + y2(2x + y))(2x + y) = 0
((2x * 4xy + y * 4xy) + 4x2 * (2x + y) + y2(2x + y))(2x + y) = 0

Reorder the terms:
((4xy2 + 8x2y) + 4x2 * (2x + y) + y2(2x + y))(2x + y) = 0
((4xy2 + 8x2y) + 4x2 * (2x + y) + y2(2x + y))(2x + y) = 0
(4xy2 + 8x2y + (2x * 4x2 + y * 4x2) + y2(2x + y))(2x + y) = 0

Reorder the terms:
(4xy2 + 8x2y + (4x2y + 8x3) + y2(2x + y))(2x + y) = 0
(4xy2 + 8x2y + (4x2y + 8x3) + y2(2x + y))(2x + y) = 0
(4xy2 + 8x2y + 4x2y + 8x3 + (2x * y2 + y * y2))(2x + y) = 0
(4xy2 + 8x2y + 4x2y + 8x3 + (2xy2 + y3))(2x + y) = 0

Reorder the terms:
(4xy2 + 2xy2 + 8x2y + 4x2y + 8x3 + y3)(2x + y) = 0

Combine like terms: 4xy2 + 2xy2 = 6xy2
(6xy2 + 8x2y + 4x2y + 8x3 + y3)(2x + y) = 0

Combine like terms: 8x2y + 4x2y = 12x2y
(6xy2 + 12x2y + 8x3 + y3)(2x + y) = 0

Multiply (6xy2 + 12x2y + 8x3 + y3) * (2x + y)
(6xy2 * (2x + y) + 12x2y * (2x + y) + 8x3 * (2x + y) + y3(2x + y)) = 0
((2x * 6xy2 + y * 6xy2) + 12x2y * (2x + y) + 8x3 * (2x + y) + y3(2x + y)) = 0

Reorder the terms:
((6xy3 + 12x2y2) + 12x2y * (2x + y) + 8x3 * (2x + y) + y3(2x + y)) = 0
((6xy3 + 12x2y2) + 12x2y * (2x + y) + 8x3 * (2x + y) + y3(2x + y)) = 0
(6xy3 + 12x2y2 + (2x * 12x2y + y * 12x2y) + 8x3 * (2x + y) + y3(2x + y)) = 0

Reorder the terms:
(6xy3 + 12x2y2 + (12x2y2 + 24x3y) + 8x3 * (2x + y) + y3(2x + y)) = 0
(6xy3 + 12x2y2 + (12x2y2 + 24x3y) + 8x3 * (2x + y) + y3(2x + y)) = 0
(6xy3 + 12x2y2 + 12x2y2 + 24x3y + (2x * 8x3 + y * 8x3) + y3(2x + y)) = 0

Reorder the terms:
(6xy3 + 12x2y2 + 12x2y2 + 24x3y + (8x3y + 16x4) + y3(2x + y)) = 0
(6xy3 + 12x2y2 + 12x2y2 + 24x3y + (8x3y + 16x4) + y3(2x + y)) = 0
(6xy3 + 12x2y2 + 12x2y2 + 24x3y + 8x3y + 16x4 + (2x * y3 + y * y3)) = 0
(6xy3 + 12x2y2 + 12x2y2 + 24x3y + 8x3y + 16x4 + (2xy3 + y4)) = 0

Reorder the terms:
(6xy3 + 2xy3 + 12x2y2 + 12x2y2 + 24x3y + 8x3y + 16x4 + y4) = 0

Combine like terms: 6xy3 + 2xy3 = 8xy3
(8xy3 + 12x2y2 + 12x2y2 + 24x3y + 8x3y + 16x4 + y4) = 0

Combine like terms: 12x2y2 + 12x2y2 = 24x2y2
(8xy3 + 24x2y2 + 24x3y + 8x3y + 16x4 + y4) = 0

Combine like terms: 24x3y + 8x3y = 32x3y
(8xy3 + 24x2y2 + 32x3y + 16x4 + y4) = 0

Solving
8xy3 + 24x2y2 + 32x3y + 16x4 + y4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| -7(2n+5)=n | | -3x-3=4+4x | | -8-4x=-2x+2 | | 6(1/3) | | -9/20=x-13/16 | | 6x+9=19+2x | | -8-4x=-2x | | -6(-5-7h)=h | | 6(1/2) | | 5.40x+9.70(129-x)=941.70 | | 5c-8=2c-20 | | 3x+2=2(x-7) | | 1/13x^2-x-26=0 | | -2.4x-0.7=-1 | | 10w+9=3w+23 | | 2(x+6)+3x=2(x+1)+1 | | 6(c+4)=8+5c | | 2.1x+4.6(4x)=5330 | | 1=3(x-4)+3-2x | | -2/3x-5/6=7/12 | | 28z-33=3 | | 0.008x+0.006(x+9)=1.24+23x | | 4.20x+5.70(4x)=918.00 | | -x^2+5x=6 | | 35(3x+5)-28(x+7)=20 | | -18/5+5 | | 4.20x+5.70(4)=918.00 | | -1.3x-2.2=-2.8 | | -7d+8+12d=-10 | | 8(-3-4f)=f | | 105x+175-28x+196=20 | | -12-3r=8 |

Equations solver categories