(2x-1)(2x+1)=(x-5)2+307

Simple and best practice solution for (2x-1)(2x+1)=(x-5)2+307 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-1)(2x+1)=(x-5)2+307 equation:



(2x-1)(2x+1)=(x-5)2+307
We move all terms to the left:
(2x-1)(2x+1)-((x-5)2+307)=0
We use the square of the difference formula
4x^2-((x-5)2+307)-1=0
We calculate terms in parentheses: -((x-5)2+307), so:
(x-5)2+307
We multiply parentheses
2x-10+307
We add all the numbers together, and all the variables
2x+297
Back to the equation:
-(2x+297)
We get rid of parentheses
4x^2-2x-297-1=0
We add all the numbers together, and all the variables
4x^2-2x-298=0
a = 4; b = -2; c = -298;
Δ = b2-4ac
Δ = -22-4·4·(-298)
Δ = 4772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4772}=\sqrt{4*1193}=\sqrt{4}*\sqrt{1193}=2\sqrt{1193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{1193}}{2*4}=\frac{2-2\sqrt{1193}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{1193}}{2*4}=\frac{2+2\sqrt{1193}}{8} $

See similar equations:

| (E+5)x5=45 | | (9x+11)+10x)=180 | | x57=—3 | | 7+24x=20x+19 | | a-11*7=35 | | 8(3s+9)=240 | | a/3.5=-18 | | 6(2l+3)=138 | | x7+17=3 | | 2x2-4+3x=x2+2(x+1) | | x=2250·x+6750 | | 3y–8=y+4 | | 3x^2+3x+2x+2=3x^2+17 | | 3(x-1)=+7 | | x5(x−4)=−50 | | 2x+30=3x-60 | | 45/x=(-5) | | 3x+60=2x+30 | | 20+2x=12=0 | | 5x×4=28-2x | | (4/x)*x=4+15 | | 12-3x=4x+5 | | 7w-24=2w+21 | | 2a-5/3=5 | | 10x+6-4x-6=6x²-12 | | 57=9+8r | | 34=4p+2 | | 2(4x+3)=1=x-2 | | 46=6h+4 | | 2^2×-6×2^x=16 | | ×=15y | | 5+6x+x2=0 |

Equations solver categories