(2x-1)(2x-1)=(2x-1)(x+3)

Simple and best practice solution for (2x-1)(2x-1)=(2x-1)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-1)(2x-1)=(2x-1)(x+3) equation:



(2x-1)(2x-1)=(2x-1)(x+3)
We move all terms to the left:
(2x-1)(2x-1)-((2x-1)(x+3))=0
We multiply parentheses ..
(+4x^2-2x-2x+1)-((2x-1)(x+3))=0
We calculate terms in parentheses: -((2x-1)(x+3)), so:
(2x-1)(x+3)
We multiply parentheses ..
(+2x^2+6x-1x-3)
We get rid of parentheses
2x^2+6x-1x-3
We add all the numbers together, and all the variables
2x^2+5x-3
Back to the equation:
-(2x^2+5x-3)
We get rid of parentheses
4x^2-2x^2-2x-2x-5x+1+3=0
We add all the numbers together, and all the variables
2x^2-9x+4=0
a = 2; b = -9; c = +4;
Δ = b2-4ac
Δ = -92-4·2·4
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-7}{2*2}=\frac{2}{4} =1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+7}{2*2}=\frac{16}{4} =4 $

See similar equations:

| 1.26x=+2.16=7.71 | | 32.57=5s+4.97 | | 4t^2=196 | | -2-x=x+8 | | −21+​7​​x​​=−11 | | 6n=30+3n–12 | | 3a+19=-11 | | 3x-2=4x+3-x | | 8-6m=4m=48 | | 9h+10=11h+0 | | -3x+2x-7=2(1-3x)-(1-x) | | y/3=-21 | | 15x+21=8(10+3x0-2 | | 3+(2u=8)=60 | | 5(x-9)/4=4(×+9)/5 | | |w|-24=-15 | | -5x+3=5-5x | | x=546 | | 9d–8d=16 | | 0.5(4x-2)+3x=6x-10 | | 3(-2x-4)=6x-12 | | 3(x=2)-7x | | 7/8x+1=3/4x-2 | | 6(x-1)-8=-4(-5x+5)-4x | | 4a–2a=16 | | 3=6x/15+7x/15 | | -5x-33=-33 | | 7x+1-3=4x+2=7x | | 5x/9+2/3=4 | | 1/2(4x-)+3x=6x-10 | | 4x-23=2x=17 | | 2x+15=5x18 |

Equations solver categories