(2x-1)(3x+4)=180

Simple and best practice solution for (2x-1)(3x+4)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-1)(3x+4)=180 equation:


Simplifying
(2x + -1)(3x + 4) = 180

Reorder the terms:
(-1 + 2x)(3x + 4) = 180

Reorder the terms:
(-1 + 2x)(4 + 3x) = 180

Multiply (-1 + 2x) * (4 + 3x)
(-1(4 + 3x) + 2x * (4 + 3x)) = 180
((4 * -1 + 3x * -1) + 2x * (4 + 3x)) = 180
((-4 + -3x) + 2x * (4 + 3x)) = 180
(-4 + -3x + (4 * 2x + 3x * 2x)) = 180
(-4 + -3x + (8x + 6x2)) = 180

Combine like terms: -3x + 8x = 5x
(-4 + 5x + 6x2) = 180

Solving
-4 + 5x + 6x2 = 180

Solving for variable 'x'.

Reorder the terms:
-4 + -180 + 5x + 6x2 = 180 + -180

Combine like terms: -4 + -180 = -184
-184 + 5x + 6x2 = 180 + -180

Combine like terms: 180 + -180 = 0
-184 + 5x + 6x2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-30.66666667 + 0.8333333333x + x2 = 0

Move the constant term to the right:

Add '30.66666667' to each side of the equation.
-30.66666667 + 0.8333333333x + 30.66666667 + x2 = 0 + 30.66666667

Reorder the terms:
-30.66666667 + 30.66666667 + 0.8333333333x + x2 = 0 + 30.66666667

Combine like terms: -30.66666667 + 30.66666667 = 0.00000000
0.00000000 + 0.8333333333x + x2 = 0 + 30.66666667
0.8333333333x + x2 = 0 + 30.66666667

Combine like terms: 0 + 30.66666667 = 30.66666667
0.8333333333x + x2 = 30.66666667

The x term is 0.8333333333x.  Take half its coefficient (0.4166666667).
Square it (0.1736111111) and add it to both sides.

Add '0.1736111111' to each side of the equation.
0.8333333333x + 0.1736111111 + x2 = 30.66666667 + 0.1736111111

Reorder the terms:
0.1736111111 + 0.8333333333x + x2 = 30.66666667 + 0.1736111111

Combine like terms: 30.66666667 + 0.1736111111 = 30.8402777811
0.1736111111 + 0.8333333333x + x2 = 30.8402777811

Factor a perfect square on the left side:
(x + 0.4166666667)(x + 0.4166666667) = 30.8402777811

Calculate the square root of the right side: 5.553402361

Break this problem into two subproblems by setting 
(x + 0.4166666667) equal to 5.553402361 and -5.553402361.

Subproblem 1

x + 0.4166666667 = 5.553402361 Simplifying x + 0.4166666667 = 5.553402361 Reorder the terms: 0.4166666667 + x = 5.553402361 Solving 0.4166666667 + x = 5.553402361 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + x = 5.553402361 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + x = 5.553402361 + -0.4166666667 x = 5.553402361 + -0.4166666667 Combine like terms: 5.553402361 + -0.4166666667 = 5.1367356943 x = 5.1367356943 Simplifying x = 5.1367356943

Subproblem 2

x + 0.4166666667 = -5.553402361 Simplifying x + 0.4166666667 = -5.553402361 Reorder the terms: 0.4166666667 + x = -5.553402361 Solving 0.4166666667 + x = -5.553402361 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + x = -5.553402361 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + x = -5.553402361 + -0.4166666667 x = -5.553402361 + -0.4166666667 Combine like terms: -5.553402361 + -0.4166666667 = -5.9700690277 x = -5.9700690277 Simplifying x = -5.9700690277

Solution

The solution to the problem is based on the solutions from the subproblems. x = {5.1367356943, -5.9700690277}

See similar equations:

| -0.001x^2+0.03x=0 | | y=-0.001x^2+0.03x | | (2x+1(x-1/2)) | | 180=v/2+4 | | 36+3y-8=13y-14-4y | | X=7z-y | | x^2(x^2+1)=361 | | 4(2x+5)-7=36 | | 8v=u | | Z=7x-y | | 60a^3= | | 30/(-6)+7-2(5-3)^2 | | 3(n-3)-(3-6n)=8n | | -5(x+2)-18=14+3 | | (10.7)rad+(4)rad= | | 8x+10-7x=19 | | 2.675rad= | | -16x^2+56x+1=0 | | 1/100(p-200)=4.5 | | 6(x-4)+7=-3 | | 4/(49a^2-1) | | 4/(49a^1-1) | | 20a^3+20a^3+20a^3=60a^3 | | 300-10x+25y=5.10 | | u(x)=3x-4 | | 300-10y+25y=5.10 | | -16x^2+300=100 | | -16x^2+300=0 | | x=10/3 | | 5/12=x/8 | | -16x^2+52x+16=0 | | 7+(1/2)x=4 |

Equations solver categories