If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-1)(3x-19)=180
We move all terms to the left:
(2x-1)(3x-19)-(180)=0
We multiply parentheses ..
(+6x^2-38x-3x+19)-180=0
We get rid of parentheses
6x^2-38x-3x+19-180=0
We add all the numbers together, and all the variables
6x^2-41x-161=0
a = 6; b = -41; c = -161;
Δ = b2-4ac
Δ = -412-4·6·(-161)
Δ = 5545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-\sqrt{5545}}{2*6}=\frac{41-\sqrt{5545}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+\sqrt{5545}}{2*6}=\frac{41+\sqrt{5545}}{12} $
| 2x+1+3x-19=180 | | 7x-5+2x=8x+1 | | 2x-6=5x-x | | 8v/13+13=v/4 | | 2m/3=7 | | 2m/3+m=7 | | 3-2t=23-7t | | 37=5(v+5)-3v | | -7u+4(u-4)=-25 | | -2=2w+2(w+5) | | -x+11=241 | | 6=-u+175 | | 3.8e=0 | | 3.8e^-17.8=0 | | 3(x-15)+45=5x-10+9x | | 5x+25=7x+4 | | 7b+23=11b | | 3x+10+4x-36=180 | | 260=94-u | | -6x+4(x-4)=-36 | | -x/11+3=12 | | (x+80)=(3x) | | 2y-5=3y-1 | | 40=40t | | 3x*5x=90 | | 5=x+13/2 | | -5v+12=-28 | | 2(3y+4)=42 | | 5x^2-25x+48=0 | | x/4+152=180 | | 3x-12x+9x=-4+3+1 | | 2x+4=8x-14=180 |