If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-1)(x+1)=4(1+x)(1-x)-6x
We move all terms to the left:
(2x-1)(x+1)-(4(1+x)(1-x)-6x)=0
We add all the numbers together, and all the variables
(2x-1)(x+1)-(4(x+1)(-1x+1)-6x)=0
We multiply parentheses ..
(+2x^2+2x-1x-1)-(4(x+1)(-1x+1)-6x)=0
We calculate terms in parentheses: -(4(x+1)(-1x+1)-6x), so:We get rid of parentheses
4(x+1)(-1x+1)-6x
We add all the numbers together, and all the variables
-6x+4(x+1)(-1x+1)
We multiply parentheses ..
4(-1x^2+x-1x+1)-6x
We multiply parentheses
-4x^2+4x-4x-6x+4
We add all the numbers together, and all the variables
-4x^2-6x+4
Back to the equation:
-(-4x^2-6x+4)
2x^2+4x^2+2x-1x+6x-1-4=0
We add all the numbers together, and all the variables
6x^2+7x-5=0
a = 6; b = 7; c = -5;
Δ = b2-4ac
Δ = 72-4·6·(-5)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*6}=\frac{-20}{12} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*6}=\frac{6}{12} =1/2 $
| 5x=30*5 | | 2/x(x)+3x-2=1 | | 5*5x=80 | | 8/x-5=x+2 | | 5x=80/5 | | 5x=80-5 | | 3z/10-9=5 | | 5x/5=80 | | 5x*5=80 | | 3x+1.257=40 | | 8x-23=3x+27 | | (2x+3)(2x+3)=5(2x+3) | | K-3=3k-5 | | (X-3)(x-3)=7(x-3) | | X(x)-x+0.25=0 | | 3^2x+3^(X+1)=810 | | 5-3x(x)=x(3x-13) | | x*8/15=1 | | X(5-x)=-36 | | 10x+30=x+12 | | (X)(x)+0.5x=3 | | (2x-1)(x+3)-15=0 | | (X-4)(x-4)=4x-11 | | (X-1)(x-1)-(x-1)=0 | | x^4+2x^3+2x+1=0 | | 2xxx=128 | | (X-3)(x-3)=3x-11 | | 2x*7=3x*9 | | 10x+30=5x+3 | | (4x+5)*3=51 | | 4x+5*3=51 | | -3x+10=x+18 |