If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-1)2-(4x+1)(4x-1)=4x(1-2x)
We move all terms to the left:
(2x-1)2-(4x+1)(4x-1)-(4x(1-2x))=0
We add all the numbers together, and all the variables
(2x-1)2-(4x+1)(4x-1)-(4x(-2x+1))=0
We use the square of the difference formula
16x^2+(2x-1)2-(4x(-2x+1))+1=0
We multiply parentheses
16x^2+4x-(4x(-2x+1))-2+1=0
We calculate terms in parentheses: -(4x(-2x+1)), so:We add all the numbers together, and all the variables
4x(-2x+1)
We multiply parentheses
-8x^2+4x
Back to the equation:
-(-8x^2+4x)
16x^2-(-8x^2+4x)+4x-1=0
We get rid of parentheses
16x^2+8x^2-4x+4x-1=0
We add all the numbers together, and all the variables
24x^2-1=0
a = 24; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·24·(-1)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*24}=\frac{0-4\sqrt{6}}{48} =-\frac{4\sqrt{6}}{48} =-\frac{\sqrt{6}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*24}=\frac{0+4\sqrt{6}}{48} =\frac{4\sqrt{6}}{48} =\frac{\sqrt{6}}{12} $
| 2m-13=13 | | 2x+.8÷9=1.2 | | 56-(3c+4)=49c+5)=c | | 19+8a=-69 | | 7n^2-258=-6 | | 3=2x2-4x | | 7=4v+43=2v | | -17=-5a-7 | | 1/2x+4=5/2x-8 | | 2x2+11x+21=-(x-5)(x+5) | | x^2+16-320=0 | | 7x+2+x+8=0 | | -55+6d+3=34 | | 2.1+10m=8.94 | | 0.325=39/b | | 5x-+2x-8=20 | | 10x-35=15x+40=4x+7 | | 31=-2.1h+1 | | (6+8)=(3x+38) | | 8x(7-3x)+1=4(2-x)(2+x) | | x3+x2-20=340 | | 14+y=3 | | 0.4y−8=9−0.6y | | 8(7-3x)+1=4(2-x)(2+x) | | |k|+2=10 | | |4x-1|=2x+9 | | x2+√2x-4=0 | | (7^x-2√10)(7^+2√10)=9 | | -0.6(3x-4)+3x=0.833 | | (5x+2)/3=8 | | 6=|s|−6 | | 23n+8=12 |