(2x-11)(x+35)=180

Simple and best practice solution for (2x-11)(x+35)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-11)(x+35)=180 equation:



(2x-11)(x+35)=180
We move all terms to the left:
(2x-11)(x+35)-(180)=0
We multiply parentheses ..
(+2x^2+70x-11x-385)-180=0
We get rid of parentheses
2x^2+70x-11x-385-180=0
We add all the numbers together, and all the variables
2x^2+59x-565=0
a = 2; b = 59; c = -565;
Δ = b2-4ac
Δ = 592-4·2·(-565)
Δ = 8001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8001}=\sqrt{9*889}=\sqrt{9}*\sqrt{889}=3\sqrt{889}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-3\sqrt{889}}{2*2}=\frac{-59-3\sqrt{889}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+3\sqrt{889}}{2*2}=\frac{-59+3\sqrt{889}}{4} $

See similar equations:

| (2a-5)a=-3 | | 4x+13=7x+34 | | 12x^2+20x+4=0 | | -2/3x-1/2=3/5 | | p+53=15 | | 13=-8w+5(w+2) | | 3+1/7x=x | | 2/3x=11/5 | | x3+19=32 | | 13=-8w | | 18x^2+20x+16=0 | | -3+12=2-3q | | X+9=r9 | | 3(x+8)+8x=11 | | -28=-3+5x | | 6(u+2)=9u-9 | | 36=3u-15 | | 68x+32=180 | | 2x+11=10x+39 | | 99x+22=180 | | x/5-11=33 | | 7x-37=-5(x-7) | | x/11-11=33 | | 7a-10=3a+2 | | 8x2-7=0 | | 11+9v=4+10v | | 4n+15=180 | | 100x+14=180 | | x/3+18=39 | | 2(3c-1)-2=4c+4 | | 3u2+2u−6=0 | | x^2-8x+14=x- |

Equations solver categories