If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-15)+(x+5)+(3/2x-5)+(1/2x+15)=100
We move all terms to the left:
(2x-15)+(x+5)+(3/2x-5)+(1/2x+15)-(100)=0
Domain of the equation: 2x-5)!=0
x∈R
Domain of the equation: 2x+15)!=0We get rid of parentheses
x∈R
2x+x+3/2x+1/2x-15+5-5+15-100=0
We multiply all the terms by the denominator
2x*2x+x*2x-15*2x+5*2x-5*2x+15*2x-100*2x+3+1=0
We add all the numbers together, and all the variables
2x*2x+x*2x-15*2x+5*2x-5*2x+15*2x-100*2x+4=0
Wy multiply elements
4x^2+2x^2-30x+10x-10x+30x-200x+4=0
We add all the numbers together, and all the variables
6x^2-200x+4=0
a = 6; b = -200; c = +4;
Δ = b2-4ac
Δ = -2002-4·6·4
Δ = 39904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39904}=\sqrt{16*2494}=\sqrt{16}*\sqrt{2494}=4\sqrt{2494}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-4\sqrt{2494}}{2*6}=\frac{200-4\sqrt{2494}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+4\sqrt{2494}}{2*6}=\frac{200+4\sqrt{2494}}{12} $
| 4x=-5(1+3x)+5 | | 7e−3=25 | | 6(z+3)=30 | | 3(2a−5)=3+12a | | (2x-15)+(x+5)+(3/2x-5)+(12x+15)=100 | | 3x/4-12=1-x/3 | | 5/3x-1-7/6x=1/1-x | | 5x-18=15-6x | | a+4=a+18. | | 5(2g-4)=18 | | 5(3a-6)=15 | | 9+7x=100 | | 52=6+3+3+(x/4) | | x=-6=8 | | 4x-40=2(5x-4)-2 | | 10x+4=24+6x | | 2f/9-3=-2 | | 11x+22=7x+30 | | 11700=0,15x+0,24x | | 9x−17=82 | | -4x^2+24x-12=0 | | 5x+8=2(2x-1) | | 4(3x+3)-5=19 | | 16x^=1 | | x−125=12 | | x-12/2+10+4=10 | | 2^(x-1)+2^(x+3)=17 | | -5-x=-x+6 | | 4x/5=6-x/5 | | 5a-4=20 | | -11(b+9)=3(-33-b) | | 5a-2=38 |