(2x-15)+(x+5)+(3/2x-5)+(12x+15)=100

Simple and best practice solution for (2x-15)+(x+5)+(3/2x-5)+(12x+15)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-15)+(x+5)+(3/2x-5)+(12x+15)=100 equation:



(2x-15)+(x+5)+(3/2x-5)+(12x+15)=100
We move all terms to the left:
(2x-15)+(x+5)+(3/2x-5)+(12x+15)-(100)=0
Domain of the equation: 2x-5)!=0
x∈R
We get rid of parentheses
2x+x+3/2x+12x-15+5-5+15-100=0
We multiply all the terms by the denominator
2x*2x+x*2x+12x*2x-15*2x+5*2x-5*2x+15*2x-100*2x+3=0
Wy multiply elements
4x^2+2x^2+24x^2-30x+10x-10x+30x-200x+3=0
We add all the numbers together, and all the variables
30x^2-200x+3=0
a = 30; b = -200; c = +3;
Δ = b2-4ac
Δ = -2002-4·30·3
Δ = 39640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39640}=\sqrt{4*9910}=\sqrt{4}*\sqrt{9910}=2\sqrt{9910}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-2\sqrt{9910}}{2*30}=\frac{200-2\sqrt{9910}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+2\sqrt{9910}}{2*30}=\frac{200+2\sqrt{9910}}{60} $

See similar equations:

| 3x/4-12=1-x/3 | | 5/3x-1-7/6x=1/1-x | | 5x-18=15-6x | | a+4=a+18. | | 5(2g-4)=18 | | 5(3a-6)=15 | | 9+7x=100 | | 52=6+3+3+(x/4) | | x=-6=8 | | 4x-40=2(5x-4)-2 | | 10x+4=24+6x | | 2f/9-3=-2 | | 11x+22=7x+30 | | 11700=0,15x+0,24x | | 9x−17=82 | | -4x^2+24x-12=0 | | 5x+8=2(2x-1) | | 4(3x+3)-5=19 | | 16x^=1 | | x−125=12 | | x-12/2+10+4=10 | | 2^(x-1)+2^(x+3)=17 | | -5-x=-x+6 | | 4x/5=6-x/5 | | 5a-4=20 | | -11(b+9)=3(-33-b) | | 5a-2=38 | | (26x51)+x=1624 | | 3(4+b)=8(b-1) | | 308-11x=8+x | | 5x-3=2x-2+5 | | 6x+3=33-4x |

Equations solver categories